#### ABBREVIATED PRELIMINARY ASSESSMENT

## Sidney Mine in the Monte Cristo Mining District



Cover Photo: Portal of the Sidney Mine adit.

Mount Baker-Snoqualmie National Forest Darrington Ranger District Snohomish County, WA

September, 2006

#### TABLE OF CONTENTS

|                                                      | Page |
|------------------------------------------------------|------|
| EXECUTIVE SUMMARY                                    | i    |
| 1.0 INTRODUCTION                                     | 1    |
| 2.0 SITE DESCRIPTION, OPERATIONAL HISTORY, AND WASTE |      |
| CHARACTERISTICS                                      | 1    |
| 3.0 SITE SAMPLING AND TEST RESULTS                   | 3    |
| 3.1 Previous Analytical Data                         | 3    |
| 3.2 Soil Samples                                     | 4    |
| 3.3 Surface Water Samples                            | 4    |
| 4.0 REMOVAL ACTION JUSTIFICATION                     | 5    |
| 5.0 SUMMARY                                          | 6    |
| 6.0 RECOMMENDATION                                   | 7    |
| 7.0 DISCLAIMER                                       | 7    |
| REFERENCES                                           | 8    |
|                                                      |      |

#### **APPENDICES**

| Appendix A | Abbreviated Preliminary Assessment Checklist     |
|------------|--------------------------------------------------|
| Appendix B | Summary of Previous Analytical Data              |
| Appendix C | Niton XRF Analytical Data Summary                |
| Appendix D | Water Quality Analytical Data                    |
| Appendix E | Site Photographs                                 |
| Appendix F | Analytical Report from Severn Trent Laboratories |
|            |                                                  |

#### **EXECUTIVE SUMMARY**

The Forest Service performed an Abbreviated Preliminary Assessment for the Sidney Mine to determine the need for further site characterization. The Sidney Mine is located approximately 40 miles east of Everett, WA on federal lands within the Henry M. Jackson Wilderness on the Mount Baker-Snoqualmie National Forest, Darrington Ranger District. The mine falls within the 76 Creek drainage which along with Glacier Creek forms the South Fork Sauk River at their confluence near the town site of Monte Cristo. Numerous cabins and seasonal residences are located within the town site and immediately downstream. The Sidney Mine is located immediately adjacent to 76 Creek at an elevation of approximately 3,300 feet above mean sea level (MSL). The mine was visited and sampled on August 3, 2006. The South Fork Sauk River and lower reaches of 76 Creek are known to contain threatened and endangered populations of Bull Trout/Dolly Varden, Steelhead, Pink Salmon, Coho Salmon, and/or Chinook Salmon.

Two composite soil samples from the mine waste rock dump were collected in the field, prepared for bench testing, and analyzed in the lab using a Niton X-Ray Fluorescence (XRF) analyzer in accordance with EPA Method 6200. Arsenic (7,654-40,781 mg/kg) and chromium (1,010-2,480 mg/kg) concentrations in both samples and iron (65,300-149,900 mg/kg) concentrations in one sample exceeded Washington's Model Toxics Control Act (MTCA) Method A cleanup levels and/or EPA Region IX Preliminary Remediation Goals (PRGs) for industrial properties. Arsenic, chromium, and lead (243-518 mg/kg) in both samples and tin (175-282 mg/kg) in one sample exceeded soil concentrations established under MTCA to be protective of terrestrial ecological receptors at most industrial/commercial sites. However, exceedance of ecological receptor values does not necessarily trigger cleanup actions. 76 Creek has eroded and will continue to erode waste rock from the toe of the dump.

Two water quality samples were collected along 76 Creek above and below the Sidney Mine. Mine effluent discharging from the mine adit was also sampled. All three samples were analyzed for hardness and total antimony, arsenic, cadmium, copper, lead, nickel, and zinc. The two samples taken along 76 Creek were analyzed for sulfate. The sample of mine effluent discharging from the Sidney Mine adit met Washington State chronic surface water quality standards for protection of aquatic species. The adit sample did exceed drinking water criteria and human health criteria for water+organism and organism only for arsenic. Antimony, arsenic, copper, lead, nickel, and zinc were detected in the sample taken from 76 Creek above the Sidney Mine. Lead was the only analyte to exceed Washington State aquatic chronic criteria for surface waters in the upstream sample. All analytes met drinking water standards but not the human health standard for water+organism and/or organism only for arsenic. Sulfate levels were very low in the upstream sample at 1.6 mg/L. Antimony, copper, lead, nickel, and zinc were detected in the sample from 76 Creek below the Sidney Mine, arsenic and cadmium were below detection limits. Only lead and sulfate concentrations increased slightly from the upstream sample to the downstream. Antimony, arsenic, copper, nickel, and zinc all decreased in concentration downstream. As in the upstream sample, lead was the only analyte in the downstream sample to exceed Washington State aquatic chronic criteria for surface waters. All analytes in the downstream sample met drinking water standards and appear to have met human health standards (arsenic detection limit was above applicable human health standards). Sulfate levels remained very low at 1.8 mg/L in the downstream sample.

Based on the analytical results for soil and water samples; proximity to cabins and seasonal residences downstream at the town site of Monte Cristo; known populations of threatened and endangered Bull Trout/Dolly Varden, Steelhead, and Salmon populations in the lower reaches of 76 Creek and the South Fork Sauk River; accessibility of the Site to the public; and EPA's APA Checklist (Appendix A); it is recommended that a Site Inspection (SI) be performed for the Sidney Mine.

#### 1.0 <u>INTRODUCTION</u>

An Abbreviated Preliminary Assessment (APA) was performed by the US Forest Service in accordance with the EPA "Guidance for Performing Preliminary Assessments Under CERCLA", EPA "Improving Site Assessment: Abbreviated Preliminary Assessments" of 1999, the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, the Superfund Amendments and Reauthorization Act (SARA) of 1986, and the National Contingency Plan as outlined in 40 CFR Parts 300.410(c)(1)(i-v).

The purpose of this assessment was to determine whether or not there is a release or potential for a release of contaminants to the environment and/or to human health and to document whether further site characterization is warranted.

## 2.0 <u>SITE DESCRIPTION, OPERATIONAL HISTORY, AND WASTE CHARACTERISTICS</u>

The Sidney Mine is located approximately 40 miles east of Everett, WA within the Henry M. Jackson Wilderness of the Mount Baker-Snoqualmie National Forest, Darrington Ranger District. The mine falls within the 76 Creek drainage which along with Glacier Creek forms the South Fork Sauk River at their confluence near the town site of Monte Cristo. Numerous cabins and seasonal residences are located within the town site and immediately downstream. The Sidney Mine is located immediately adjacent to 76 Creek at an elevation of approximately 3,300 feet above mean sea level (MSL). The mine was visited and sampled on August 3, 2006. The South Fork Sauk River and lower reaches of 76 Creek are known to contain threatened and endangered populations of Bull Trout/Dolly Varden, Steelhead, Pink Salmon, Coho Salmon, and/or Chinook Salmon.

Access to the Site can be accomplished from either Darrington or Granite Falls via Highway 20, the Mountain Loop Highway, to Barlow Pass. Snohomish County owns and maintains the 5-mile long road (FS road 4710) from Barlow Pass to the town site of Monte Cristo. The road is gated at Barlow Pass. From the town site of Monte Cristo, the Sidney Mine can be reached by an approximately <sup>3</sup>/<sub>4</sub> mile cross-country hike along the northeast side of 76 Creek.

Location information for the Sidney Mine:

Legal: Willamette Meridian, T 29 N, R 11 E, Section 27

Lat./Long.: N 47° 58' 38" W 121° 23' 9"

USGS quadrangle: Monte Cristo

According to Church and others (1983) and Johnson and others (1985), the first claims in the Monte Cristo mining district were staked on sulfide-bearing quartz veins in 1889. By 1891, a road up the Sauk River valley was under construction and in 1893, the Everett-Monte Cristo Railroad was completed, vastly improving access to the mining district. By 1894 a 300-ton-perday concentrator and aerial tramways between the mill and the Mystery and Pride of Mountains

mines were in place and operating. The mines produced high-grade ore that was trammed to the mill and the mill produced concentrates for shipment to the Everett Smelter until 1897, when flooding along the Sauk River destroyed much of the railroad. The mines were basically shut down until 1899 when John D. Rockefeller gained a controlling interest in the mines and related companies. Railroad service was restored in 1900 and mining resumed in the District. In response to an unfavorable 1901 USGS report on the mineral deposits in the District indicating grade decreased with depth, Rockefeller began selling his holdings. Subsequently, the Guggenheim Smelter Trust, later known as ASARCO, acquired the Monte Cristo Mines and Everett Smelter. Their main interest was the smelter and consequently, the mines were shut down in 1903. The mines were sold in 1905 to the Wilmans brothers who in turn sold to mining speculator Samuel Silverman in 1906 (Wolff and others, 2003). Silverman intended to install a roasting plant at Monte Cristo to produce arsenic trioxide, a pesticide, but the company went into receivership in 1907 (Wolff and others, 2003). Limited production resumed in 1906 only to end again the following year (Johnson and others, 1985). Some mining occurred in 1920 but the District has been generally idle since that time (Johnson and others, 1985).

Among the principal mineral deposits in the Monte Cristo District was a northeast-trending, northwest-dipping shear zone in tonalite host rock exposed for 5,800 feet along strike and ranging from 1 to over 20 feet in width (Johnson and others, 1985). This shear zone contains quartz veins and lenses that pinch and swell horizontally and vertically along the vein. The veins and lenses contain pyrite, pyrrhotite, arsenopyrite, sphalerite, galena, chalcopyrite, stibnite, and lesser amounts of azurite, malachite, boulangerite, realgar, and orpiment (Johnson and others, 1985). This deposit was developed by the Justice, Golden Chord, Mystery, Pride of Woods, New Discovery, and Pride of Mountains mines (Church and others, 1983; Johnson and others, 1985). The principal commodities produced from these mines were gold, silver, copper, lead, and zinc (Broughton, 1942; Derkey and others, 1990). Production records for the District are incomplete but total production is estimated at 280,000 tons of polymetallic ore, mainly produced by the Justice, Golden Chord, Mystery, Pride of Woods, New Discovery, Pride of Mountains, Comet, and Rainy mines (Church and others, 1983; Johnson and others, 1985).

Compared to the main producers in the Monte Cristo mining district, relatively little is reported for the Sidney mine. According to Johnson and others (1985), the Sidney prospect was a gold and silver prospect that explored a northeast-trending, sulfide-bearing quartz vein in sheared andesite host rock. Huntting (1956) reported that the ore minerals were pyrite and chalcopyrite. The prospect consists of one adit 750 feet long that is reported to be caved approximately 205 feet from the portal (Johnson and others, 1985). There has been no recorded production from the mine. Assays from several hundred tons of waste rock material in the dump at the Sidney have average values of 0.08 ounces per ton gold, 0.3 ounces per ton silver, and 1.35% arsenic (Johnson and others, 1985). Current observations for the Sidney Mine include the following:

- The mine adit is open at the portal and located immediately adjacent to 76 Creek on the northeast side of the creek (Appendix E-1, Photo1).
- Mine effluent discharges from the adit at approximately 2-3 gallons per minute into 76 Creek (Appendix E-1, Photo 2). The drainage is clear and there is no discoloration of the discharge path substrate.

- Waste rock was brought out of the mine on rails and side cast on steep side slopes immediately adjacent to 76 Creek (Appendix E-2, Photos 3 and 4).
- The waste rock dump is fairly well vegetated with shrubs and small trees and is roughly estimated at approximately 200 LCY (Appendix E-2, photos 3 and 4).
- The majority of the waste rock dump at depth comprises ferricrete which forms when waste material has been cemented by iron oxides (Appendix E-3, Photo 5).
- 76 Creek has eroded and will continue to erode waste rock from the toe of the dump (Appendix E-2, Photo 4).
- A significant amount of rails and other mining-related equipment has accumulated in 76 Creek just downstream from the mine (Appendix E-3, Photo 6).

The Henry M. Jackson Wilderness is closed to entry and appropriation under the U.S. Mining laws and there are no mining claims with valid existing rights in the area (BLM LR2000 database, accessed 7/13/2006).

#### 3.0 <u>SITE SAMPLING AND TEST RESULTS</u>

#### 3.1 <u>Previous Investigations</u>

One previous investigation looked at possible human health and environmental impacts stemming from historic mining in the 76 Creek drainage. Crofoot and O'Brien (2004) performed rather extensive soil and water sampling in both the Glacier Creek and 76 Creek drainages in September of 2003 as part of a Site Hazard Assessment (SHA) performed under MTCA (Appendix B-1). At the Sidney mine, soil samples were analyzed in-situ with a XRF analyzer. Surface water samples from along 76 Creek at or near and above the mine were analyzed for priority pollutant metals. The results of their investigation for the 76 Creek drainage were as follows:

- In-situ XRF analysis of the waste rock dump material revealed elevated arsenic, lead, and mercury concentrations that exceeded MTCA Method A and/or B cleanup goals for unrestricted land use (Appendices B-2 and B-3).
- A surface water sample from the headwaters of 76 Creek only had detections for lead, copper, and antimony (Appendix B-4). Lead was the only metal to exceed Washington State chronic surface water criteria for protection of aquatic species (Appendix B-4). The sample met drinking water standards and appeared to meet the human health standards but arsenic detection limit was above human health criteria.
- A surface water sample from 76 Creek at or near the Sidney mine dump had detections for arsenic, lead, copper, and antimony (Appendix B-4). All four metals increased in concentration downstream but lead was the only metal to exceed Washington State chronic surface water criteria for protection of aquatic species (Appendix B-4). The sample met drinking water standards but exceeded the human health criteria for organism only and organism+water for arsenic.

#### 3.2 Soil Samples

Two composite soil samples were collected from the Sidney mine waste rock dump to assess the material for potential contamination (Appendix C-1). Surface soils were removed to approximately 4 to 6 inches below grade in order to get below highly oxidized surface layers. Samples were collected using stainless steel scoops and placed in Low Density Polyethylene (LDPE) bags for subsequent bench testing. Samples were prepared and analyzed with a Niton XRF, Model XL-722S in accordance with EPA Method 6200. The analytical results from this effort are provided in Appendix C and summarized below. It is important to note that detection limits for certain elements were higher than the cleanup goals or standards to which they were compared (Appendix C). As a result, there may be additional exceedances of cleanup goals or standards not detectable using this reconnaissance analytical technique.

Arsenic (7,654-40,781 mg/kg) and chromium (1,010-2,480 mg/kg) concentrations in both samples and iron (65,300-149,900 mg/kg) in one sample exceeded Washington's Model Toxics Control Act (MTCA) Method A cleanup levels and/or EPA Region IX Preliminary Remediation Goals (PRGs) for industrial properties (Appendices C-2 to C-3). Arsenic, chromium, and lead (243-518 kg/mg) in both samples and tin (175-282 mg/kg) in one sample also exceeded soil concentrations established under MTCA to be protective of terrestrial ecological receptors at most industrial/commercial sites (Appendices C-2 to C-3). However, exceedance of ecological receptor values does not necessarily trigger cleanup actions.

#### 3.3 Water Samples

Water quality sampling at the Sidney Mine and along 76 Creek was performed on August 3, 2006. Two water quality samples were collected along 76 Creek above and below the Sidney Mine (Appendix D-1). One sample of adit discharge was collected from the only adit at the Sidney (Appendix D-1). Unfiltered water samples for metals were collected as grab samples and were collected in pre-cleaned, 250-mL High Density Polyethylene (HDPE) bottles and preserved to pH<2 with nitric acid. Metals samples were analyzed for total antimony, arsenic, cadmium, copper, lead, nickel, and zinc by Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) following EPA method SW6020. Unfiltered samples for hardness as CaCO<sub>3</sub> were collected in pre-cleaned 250-mL HDPE bottles and preserved with nitric acid. Samples for hardness were analyzed following EPA method 130.2. Unfiltered samples for sulfate were collected in pre-cleaned 250-mL HDPE bottles and left unpreserved. Samples for sulfate were analyzed by ion chromatography using EPA method 300.0. Field parameters were obtained using a Horiba U-22 meter.

All samples were double-bagged in polyethylene and placed on ice for overnight shipment via FedEx to Severn Trent Laboratories, Inc. in Tacoma, Washington. Chain of custody for the samples was maintained. Sample analysis was performed within laboratory holding times. A complete report of the quality assurance/quality control (QA/QC) procedures and results is included in the laboratory analytical report dated August 21, 2006 (Appendix F).

Field parameters for sample sites are available in Appendix D-2. Analytical results and applicable comparison criteria are in Appendix D-3. The results of the sampling are as follows:

- Antimony, arsenic, copper, lead, nickel, and zinc were detected in sample MC-76-1 taken from 76 Creek above the Sidney Mine; cadmium was under detection limits (Appendices D-1 and D-3). Lead was the only analyte to exceed Washington State aquatic chronic criteria for surface waters (Appendix D-3). All analytes met drinking water standards but not the human health standard for water+organism and/or organism only for arsenic (Appendix D-3). Sulfate levels were very low at 1.6 mg/L (Appendix D-3).
- One sample of mine effluent discharging from the Sidney Mine adit was collected (MC-76-2). The sample met Washington State chronic surface water quality standards for protection of aquatic species (Appendix D-3). The sample exceeded drinking water criteria and human health criteria for organism only and water+organism for arsenic (Appendix D-3).
- Antimony, copper, lead, nickel, and zinc were detected in sample MC-76-3 taken from 76 Creek below Sidney Mine (Appendices D-1 and D-3). Only lead and sulfate concentrations increased slightly downstream; antimony, arsenic, copper, nickel, and zinc all decreased in concentration downstream; and arsenic and cadmium were below detection limits (Appendix D-3). As in the upstream sample, lead was the only analyte to exceed Washington State aquatic chronic criteria for surface waters (Appendix D-3). All analytes met drinking water and appear to have met human health standards but the detection limit for arsenic was above human health criteria for arsenic (Appendix D-3). Sulfate levels remained very low at 1.8 mg/L (Appendix D-3).

#### 4.0 REMOVAL ACTION JUSTIFICATION

The NCP states that an appropriate removal action may be conducted at a site when a threat to human health or welfare or the environment is identified.

- The removal action is undertaken to abate, prevent, minimize, stabilize, mitigate, or eliminate the release or the threat of a release at a site.
- Section 300.415(b)(2)(i-viii) of the NCP outlines eight factors to be considered when determining the appropriateness of a removal action.
- The applicable factors are outlined below and provide justification for completing the removal action, if required.

| Factor                                                                                                                                               | Site Condition                                                                       | Justification |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|
| 1) Actual or potential exposure to nearby human populations, animals, or the food chain from hazardous substances or pollutants or contaminants      | Elevated arsenic, chromium, and lead concentrations in waste rock dump (Appendix C). | Yes           |
| 2) Actual or potential contamination of drinking water supplies or sensitive ecosystems                                                              | Cabins and seasonal residences in Monte Cristo. 76 Creek and South Fork Sauk River.  | Yes           |
| 3) Hazardous substances or pollutants or contaminants in drums, barrels, tanks, or other bulk storage containers, that may pose a threat of release. | None located at the site.                                                            | No            |

| 4) High levels of hazardous substances or pollutants or contaminants in soils | Elevated arsenic, chromium, and lead concentrations in waste rock dump | Yes |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|
| largely at or near the surface that may                                       | (Appendix C).                                                          |     |
| migrate                                                                       |                                                                        |     |
| 5) Weather conditions that may cause                                          | Heavy rain or rain on snow events.                                     |     |
| hazardous substances or pollutants or                                         | Erosion of waste rock dump by 76                                       | Yes |
| contaminants to migrate or be released                                        | Creek.                                                                 |     |
| 6) Threat of fire or other explosion                                          | None                                                                   | No  |
| 7) The availability of other appropriate                                      | N/A                                                                    |     |
| federal or state response mechanisms to                                       |                                                                        | No  |
| respond to the release                                                        |                                                                        |     |
| 8) Other situations or factors that may                                       | None                                                                   |     |
| pose threats to public health or welfare                                      |                                                                        | No  |
| of the United States or the environment                                       |                                                                        |     |

#### 5.0 **SUMMARY**

Two composite soil samples from the Sidney mine waste rock dump were collected in the field, prepared for bench testing in the lab, and analyzed with a Niton X-Ray Fluorescence (XRF) analyzer in accordance with EPA Method 6200. Arsenic (7,654-40,781 mg/kg) and chromium (1,010-2,480 mg/kg) concentrations in both samples and iron (65,300-149,900 mg/kg) concentrations in one sample exceeded Washington's Model Toxics Control Act (MTCA) Method A cleanup levels and/or EPA Region IX Preliminary Remediation Goals (PRGs) for industrial properties. Arsenic, chromium, and lead (243-518 mg/kg) in both samples and tin (175-282 mg/kg) in one sample exceeded soil concentrations established under MTCA to be protective of terrestrial ecological receptors at most industrial/commercial sites. However, exceedance of ecological receptor values does not necessarily trigger cleanup actions.

Two water quality samples were collected along 76 Creek above and below the Sidney Mine. Mine effluent discharging from the mine adit was also sampled. All three samples were analyzed for hardness and total antimony, arsenic, cadmium, copper, lead, nickel, and zinc. The two samples taken along 76 Creek were analyzed for sulfate. The sample of mine effluent discharging from the Sidney Mine adit met Washington State chronic surface water quality standards for protection of aquatic species. The adit sample did exceed drinking water criteria and human health criteria for water+organism and organism only for arsenic. Antimony, arsenic, copper, lead, nickel, and zinc were detected in the sample taken from 76 Creek above the Sidney Mine. Lead was the only analyte to exceed Washington State aquatic chronic criteria for surface waters in the upstream sample. All analytes met drinking water standards but not the human health standard for water+organism and/or organism only for arsenic. Sulfate levels were very low in the upstream sample at 1.6 mg/L. Antimony, copper, lead, nickel, and zinc were detected in the sample from 76 Creek below the Sidney Mine, arsenic and cadmium were below detection limits. Only lead and sulfate concentrations increased slightly from the upstream sample to the downstream. Antimony, arsenic, copper, nickel, and zinc all decreased in concentration downstream. As in the upstream sample, lead was the only analyte in the downstream sample to exceed Washington State aquatic chronic criteria for surface waters. All analytes in the downstream sample met drinking water standards and appear to have met human health

standards (arsenic detection limit was above applicable human health standards). Sulfate levels remained very low at 1.8 mg/L in the downstream sample.

#### 6.0 **RECOMMENDATION**

Based on the analytical results for soil and water samples; proximity to cabins and seasonal residences downstream at the town site of Monte Cristo; known populations of threatened and endangered Bull Trout/Dolly Varden, Steelhead, and Salmon populations in the lower reaches of 76 Creek and the South Fork Sauk River; accessibility of the Site to the public; and EPA's APA Checklist (Appendix A); it is recommended that a Site Inspection (SI) be performed for the Sidney Mine.

Abandoned or inactive mine workings should be closed to limit potential liability associated with the general public recreating at the Site.

#### 7.0 DISCLAIMER

This abandoned mine/mill site was created under the General Mining Law of 1872 and is located solely on National Forest System (NFS) lands administered by the Forest Service. The United States has taken the position and courts have held that the United States is not liable as an "owner" under CERCLA Section 107 for mine contamination left behind on NFS lands by miners operating under the 1872 Mining Law. Therefore, Forest Service believes that this site should not be considered a "federal facility" within the meaning of CERCLA Section 120 and should not be listed on the Federal Agency Hazardous Waste Compliance Docket. Instead, this site should be included on EPA's CERCLIS database. Consistent with the June 24, 2003 OECA/FFEO "Policy on Listing Mixed Ownership Mine or Mill Sites Created as a Result of the General Mining Law of 1872 on the Federal Agency Hazardous Waste Compliance Docket," we respectfully request that the EPA Regional Docket Coordinator consult with the Forest Service and EPA Headquarters before making a determination to include this site on the Federal Agency Hazardous Waste Compliance Docket.

#### REFERENCES

- Broughton, W.A., 1942, Inventory of mineral properties in Snohomish County, Washington: Washington Division of Geology Report of Investigations No. 6, 64 p.
- Church, S.E., Tabor, R.W., and Johnson, F.L., 1983, Mineral resource potential of the Glacier Peak Roadless Area: U.S. Geological Survey Miscellaneous Field Studies Map MF-1380-C.
- Crofoot, G.W., and O'Brien, M.S., 2004, Monte Cristo mine area Site Hazard Assessment: Snohomish Health District and Washington Department of Ecology, Toxics Cleanup Program.
- Derkey, R.E., Joseph, N.L., and Lasmanis, R., 1990, Metal mines of Washington-preliminary report: Washington Department of Natural Resources, Division of Geology and Earth Resources Open File Report 90-18. 577 p.
- Huntting, M.T., 1955, Inventory of Washington minerals, Part II, Metallic Minerals: Washington Division of Mines and Geology Bulletin No. 7, 428 p.
- Johnson, F.L., Denton, D.K., Iverson, S.R., McCulloch, R.B., Stebbins, S.A., and Stotelmeyer, R.B., 1985, Mines and prospects map of the Glacier Peak Roadless Area, Snohomish County, Washington: U.S. Geological Survey Miscellaneous Field Studies Map MF-1380-E.
- Wolff, F.E., McKay, D.T., and Norman, D.K., 2003, Inactive and abandoned mine lands-Mystery and Justice Mines, Monte Cristo mining district, Snohomish County, Washington: Washington Division of Geology and Earth Sciences Open File Report 2003-07.

## **Appendix A**

## ABBREVIATED PRELIMINARY ASSESSMENT CHECKLIST

#### ABBREVIATED PRELIMINARY ASSESSMENT CHECKLIST

This checklist can be used to help the site investigator determine if an Abbreviated Preliminary Assessment (APA) is warranted. This checklist should document the rationale for the decision on whether further steps in the site assessment process are required under CERCLA. Use additional sheets, if necessary.

(Date)

(Phone)

509-664-9262

**Checklist Preparer:** Greg Graham, Geologist September 28, 2006

(Name/Title)

USFS, 215 Melody Lane, Wenatchee, WA 98801

(Address)

ggraham@fs.fed.us (E-Mail Address)

**Site Name:** Sidney Mine

Previous Names (if any): N/A

Site Location: Near the town site of Monte Cristo, approximately 40 miles east of Everett, WA

Legal Description: Willamette Meridian, T 29 N, R 11 E, Section 27

Describe the release (or potential release) and its probable nature: Arsenic and chromium, and to a lesser degree iron, concentrations in soil samples from the Sidney Mine waste rock dump exceeded Washington's Model Toxics Control Act (MTCA) Method A cleanup levels and/or EPA Region IX Preliminary Remediation Goals (PRGs) for industrial properties. Arsenic, chromium, and lead, and to a lesser degree tin, exceeded soil concentrations established under MTCA to be protective of terrestrial ecological receptors at most industrial/commercial sites. The waste rock dump is located immediately adjacent to 76 Creek and the toe of the dump is being eroded into by the creek. Mine effluent discharging from the Sidney Mine adit met Washington State chronic surface water quality standards for protection of aquatic species but did exceed drinking water criteria and human health criteria for organism only and water+organism for arsenic. Samples from 76 Creek above and below the mine indicated that only lead and sulfate concentrations increased slightly downstream; antimony, arsenic, copper, nickel, and zinc all decreased in concentration downstream. Lead, in both the upstream and downstream sample, was the only analyte to exceed Washington State aquatic chronic criteria for surface waters. All analytes in the downstream sample met drinking water and appear to meet human health standards but the detection limit was above human health criteria for arsenic.

Part 1 - Superfund Eligibility Evaluation

| If All answers are "no" go on to Part 2, otherwise proceed to Part 3                                                                                                                                                                                                                                                                                                                                    | YES | NO |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 1. Is the site currently in CERCLIS or an "alias" of another site?                                                                                                                                                                                                                                                                                                                                      |     | X  |
| 2. Is the site being addressed by some other remedial program (Federal, State, or Tribal)?                                                                                                                                                                                                                                                                                                              |     | X  |
| 3. Are the hazardous substances potentially released at the site regulated under a statutory exclusion (i.e., petroleum, natural gas, natural gas liquids, synthetic gas usable for fuel, normal application of fertilizer, release located in a workplace, naturally occurring, or regulated by the NRC, UMTRCA, or OSHA)?                                                                             |     | X  |
| 4. Are the hazardous substances potentially released at the site excluded by policy considerations (i.e., deferred to RCRA corrective action)?                                                                                                                                                                                                                                                          |     | X  |
| 5. Is there sufficient documentation to demonstrate that no potential for a release that could cause adverse environmental or human health impacts exist (i.e., comprehensive remedial investigation equivalent data showing no release above ARAR's, completed removal action, documentation showing that no hazardous substance release have occurred, or an EPA approved risk assessment completed)? |     | X  |

#### **Part 2 - Initial Site Evaluation**

For Part 2, if information is not available to make a "yes" or "no" response, further investigation may be needed. In these cases, determine whether an APA is appropriate. Exhibit 1 parallels the questions in Part 2. Use Exhibit 1 to make decisions in Part 3.

| If the answer is "no" to any questions 1, 2, or 3, proceed directly to Part 3.   | YES | NO |
|----------------------------------------------------------------------------------|-----|----|
| 1. Does the site have a release or a potential to release?                       | X   |    |
| 2. Does the site have uncontained sources containing CERCLA eligible substances? | X   |    |
| 3. Does the site have documented on-site, adjacent, or nearby targets?           | X   |    |

| If the answers to questions 1, 2, and 3 above were all "yes" then answer the                                                                                                                                                        | YES | NO |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| questions below before proceeding to Part 3.                                                                                                                                                                                        |     |    |
| 4. Does documentation indicate that a target (i.e., drinking water wells, drinking surface water intakes, etc.) has been exposed to a hazardous substance released from the site?                                                   |     | X  |
| 5. Is there an apparent release at the site with no documentation of exposed targets, but there are targets on site or immediately adjacent to the site?                                                                            |     | X  |
| 6. Is there an apparent release and no documented on-site targets or targets immediately adjacent to the site, but there are nearby targets (i.e., targets within 1 mile)?                                                          | X   |    |
| 7. Is there no indication of a hazardous substance release, and there are uncontained sources containing CERCLA hazardous substances, but there is a potential to release with targets present on site or in proximity to the site? |     | X  |

#### **Notes:**

Potential targets include cabins and seasonal residence at and downstream of Monte Cristo town site, recreational users using the backcountry for hiking and camping, and a sensitive ecological environment in the lower reaches of 76 Creek and South Fork Sauk Creek which contains threatened and endangered Bull Trout/Dolly Varden, Steelhead, Pink Salmon, Coho Salmon, and Chinook Salmon.

## EXHIBIT 1 SITE ASSESSMENT DECISION GUIDELINES FOR A SITE

Exhibit 1 identifies different types of site information and provides some possible recommendations for further site assessment activities based on that information. You will use Exhibit 1 in determining the need for further action at the site, based on the answers to the questions in Part 2. Please use your professional judgment when evaluating a site. Your judgment may be different from the general recommendations for a site given below.

| Suspected/Documented Site Conditions               |                 | APA | FULL PA | PA/SI | SI       |
|----------------------------------------------------|-----------------|-----|---------|-------|----------|
| 1. There are no releases or potential to release.  | Yes             | No  | No      | No    |          |
| 2. No uncontained sources with CERCLA-eligi        | ble substances  | Yes | No      | No    | No       |
| are present on site.                               |                 |     |         |       |          |
| 3. There are no on-site, adjacent, or nearby targ  | Yes             | No  | No      | No    |          |
| 4. There is documentation indicating that a        | Option 1:       | Yes | No      | No    | Yes      |
| target (i.e., drinking water wells, drinking       | APA SI          |     |         |       | <u> </u> |
| surface water intakes, etc.) has been exposed      | Option 2:       | No  | No      | Yes   | No       |
| to a hazardous substance released from the site.   | PA/SI           |     |         |       |          |
| 5. There is an apparent release at the site with   | Option 1:       | Yes | No      | No    | Yes      |
| no documentation of exposed targets, but there     | APA SI          |     | _]      |       | ]        |
| are targets on site or immediately adjacent to     | Option 2:       | No  | No      | Yes   | N/A      |
| the site.                                          | PA/SI           |     |         |       |          |
| 6. There is an apparent release and no document    | ited on-site    | No  | Yes     | No    | No       |
| targets and no documented immediately adjace       | nt to the site, |     |         |       |          |
| but there are nearby targets. Nearby targets are   | those targets   |     |         |       |          |
| that are located within 1 mile of the site and ha  | ve a relatively |     |         |       |          |
| high likelihood of exposure to a hazardous subs    | stance          |     |         |       |          |
| migrating from the site.                           |                 |     |         |       |          |
| 7. There is no indication of a hazardous substar   |                 | No  | Yes     | No    | No       |
| there are uncontained sources containing CERO      |                 |     |         |       |          |
| substances, but there is a potential to release wi | th targets      |     |         |       |          |
| present on site or in proximity to the site.       |                 |     |         |       |          |

#### Part 3 - EPA Site Assessment Decision

When completing Part 3, use Part 2 and Exhibit 1 to select the appropriate decision. For example, if the answer to question 1 in Part 2 was "no," then an APA may be performed and the "NFRAP" box below should be checked. Additionally, if the answer to question 4 in Part 2 is "yes," then you have two options (as indicated in Exhibit 1): Option 1 -- conduct an APA and check the "Lower Priority SI" or "Higher Priority SI" box below; or Option 2 -- proceed with a combined PA/SI assessment.

| Check the box that applies bas    | sed on the conclusions of the APA:                            |
|-----------------------------------|---------------------------------------------------------------|
| ( ) NFRAP                         | ( ) Refer to Removal Program – further site assessment needed |
| (X) Higher Priority SI            | ( ) Refer to Removal Program – NFRAP                          |
| ( ) Lower Priority SI             | ( ) Site is being addressed as part of another CERCLIS site   |
| ( ) Defer to RCRA Subtitle C      | ( ) Other:                                                    |
| ( ) Defer to NRC                  |                                                               |
|                                   |                                                               |
| Regional EPA Reviewer: <u>N/A</u> | <u>4</u>                                                      |
| Print N                           | Name/Signature Date                                           |
|                                   |                                                               |

#### PLEASE EXPLAIN THE RATIONALE FOR YOUR DECISION:

Arsenic and chromium, and to a lesser degree iron, concentrations in soil samples from the Sidney Mine waste rock dump exceeded Washington's Model Toxics Control Act (MTCA) Method A cleanup levels and/or EPA Region IX Preliminary Remediation Goals (PRGs) for industrial properties. Arsenic, chromium, and lead, and to a lesser degree tin, exceeded soil concentrations established under MTCA to be protective of terrestrial ecological receptors at most industrial/commercial sites. The waste rock dump is located immediately adjacent to 76 Creek and the toe of the dump is being eroded into by the creek. Mine effluent discharging from the Sidney Mine adit met Washington State chronic surface water quality standards for protection of aquatic species but did exceed drinking water criteria and human health criteria for organism only and water+organism for arsenic. Samples from 76 Creek above and below the mine indicated that only lead and sulfate concentrations increased slightly downstream; antimony, arsenic, copper, nickel, and zinc all decreased in concentration downstream. Lead, in both the upstream and downstream sample, was the only analyte to exceed Washington State aquatic chronic criteria for surface waters. All analytes in the downstream sample met drinking water and appear to meet human health standards but the detection limit was above human health criteria for arsenic.

#### **NOTES:**

Access to the Site can be accomplished from either Darrington or Granite Falls via Highway 20, the Mountain Loop Highway, to Barlow Pass. Snohomish County owns and maintains the 5-mile long road (FS road 4710) from Barlow Pass to the town site of Monte Cristo. The road is gated at Barlow Pass. From the town site of Monte Cristo, the Sidney Mine is accessed via a 3/4 mile cross-country hike along the northeast side of 76 Creek.

## **Appendix B**

### **SUMMARY OF PREVIOUS ANALYTICAL DATA**

(from Crofoot and O'Brien, 2004)



Appendix B-1. Generalized location map for sample points from Site Hazard Assessment (from Crofoot and O'Brien, 2004).

## Monte Cristo Mine Area Soil Field Results for Metals using X-Ray Fluorescence, mg/kg

Serial #XL700-U35737059LY

| No | Location/Creek Basin         | Date/Time       | Pb                                                                                                                                                                                                                                                                                                            | PbErr | As                                                                                                                                                                                                                                                                    | AsErr | Hg                                                                                                                                                                                                                           | HgErr | Zn                                                                                                                                                                                     | ZnErr | Cu                                                                                                                                           | CuErr | Fe      | FeErr | Mn                                                                       | MnEr | Cr                                 | CrErr  |
|----|------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------|--------------------------------------------------------------------------|------|------------------------------------|--------|
| 9  | Calibration check-blank      | 9/14/2003 21:08 | <lod< td=""><td>6.3</td><td><lod< td=""><td>7.05</td><td><lod< td=""><td>5.1</td><td><lod< td=""><td>16.95</td><td>27.3</td><td>16</td><td>1748.8</td><td>90.7</td><td><lod< td=""><td>80.3</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>                | 6.3   | <lod< td=""><td>7.05</td><td><lod< td=""><td>5.1</td><td><lod< td=""><td>16.95</td><td>27.3</td><td>16</td><td>1748.8</td><td>90.7</td><td><lod< td=""><td>80.3</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>                | 7.05  | <lod< td=""><td>5.1</td><td><lod< td=""><td>16.95</td><td>27.3</td><td>16</td><td>1748.8</td><td>90.7</td><td><lod< td=""><td>80.3</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<>                | 5.1   | <lod< td=""><td>16.95</td><td>27.3</td><td>16</td><td>1748.8</td><td>90.7</td><td><lod< td=""><td>80.3</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>                  | 16.95 | 27.3                                                                                                                                         | 16    | 1748.8  | 90.7  | <lod< td=""><td>80.3</td><td><lod< td=""><td>25</td></lod<></td></lod<>  | 80.3 | <lod< td=""><td>25</td></lod<>     | 25     |
| 10 | Calibration check-low        | 9/14/2003 21:15 | <lod< td=""><td>7.5</td><td><lod< td=""><td>8.25</td><td><lod< td=""><td>6</td><td><lod< td=""><td>19.65</td><td><lod< td=""><td>27.8</td><td>2209.6</td><td>110</td><td><lod< td=""><td>97.4</td><td><lod< td=""><td>300</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<> | 7.5   | <lod< td=""><td>8.25</td><td><lod< td=""><td>6</td><td><lod< td=""><td>19.65</td><td><lod< td=""><td>27.8</td><td>2209.6</td><td>110</td><td><lod< td=""><td>97.4</td><td><lod< td=""><td>300</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<> | 8.25  | <lod< td=""><td>6</td><td><lod< td=""><td>19.65</td><td><lod< td=""><td>27.8</td><td>2209.6</td><td>110</td><td><lod< td=""><td>97.4</td><td><lod< td=""><td>300</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<> | 6     | <lod< td=""><td>19.65</td><td><lod< td=""><td>27.8</td><td>2209.6</td><td>110</td><td><lod< td=""><td>97.4</td><td><lod< td=""><td>300</td></lod<></td></lod<></td></lod<></td></lod<> | 19.65 | <lod< td=""><td>27.8</td><td>2209.6</td><td>110</td><td><lod< td=""><td>97.4</td><td><lod< td=""><td>300</td></lod<></td></lod<></td></lod<> | 27.8  | 2209.6  | 110   | <lod< td=""><td>97.4</td><td><lod< td=""><td>300</td></lod<></td></lod<> | 97.4 | <lod< td=""><td>300</td></lod<>    | 300    |
| 11 | Calibration check-medium     | 9/14/2003 21:22 | 28.6                                                                                                                                                                                                                                                                                                          | 6.4   | <lod< td=""><td>9.3</td><td><lod< td=""><td>5.85</td><td><lod< td=""><td>18.75</td><td>37.6</td><td>18.2</td><td>1939.2</td><td>100</td><td>95.6</td><td>63</td><td><lod< td=""><td>285</td></lod<></td></lod<></td></lod<></td></lod<>                               | 9.3   | <lod< td=""><td>5.85</td><td><lod< td=""><td>18.75</td><td>37.6</td><td>18.2</td><td>1939.2</td><td>100</td><td>95.6</td><td>63</td><td><lod< td=""><td>285</td></lod<></td></lod<></td></lod<>                              | 5.85  | <lod< td=""><td>18.75</td><td>37.6</td><td>18.2</td><td>1939.2</td><td>100</td><td>95.6</td><td>63</td><td><lod< td=""><td>285</td></lod<></td></lod<>                                 | 18.75 | 37.6                                                                                                                                         | 18.2  | 1939.2  | 100   | 95.6                                                                     | 63   | <lod< td=""><td>285</td></lod<>    | 285    |
| 12 | Calibration check-high       | 9/14/2003 21:28 | 143.3                                                                                                                                                                                                                                                                                                         | 11.2  | <lod< td=""><td>14.9</td><td>7.8</td><td>4.6</td><td>43.1</td><td>15.3</td><td><lod< td=""><td>28.8</td><td>2169.6</td><td>110</td><td><lod< td=""><td>96.8</td><td><lod< td=""><td>300</td></lod<></td></lod<></td></lod<></td></lod<>                               | 14.9  | 7.8                                                                                                                                                                                                                          | 4.6   | 43.1                                                                                                                                                                                   | 15.3  | <lod< td=""><td>28.8</td><td>2169.6</td><td>110</td><td><lod< td=""><td>96.8</td><td><lod< td=""><td>300</td></lod<></td></lod<></td></lod<> | 28.8  | 2169.6  | 110   | <lod< td=""><td>96.8</td><td><lod< td=""><td>300</td></lod<></td></lod<> | 96.8 | <lod< td=""><td>300</td></lod<>    | 300    |
| 13 | 76 Creek headwater sediment  | 9/14/2003 21:36 | UNGERGREEN CONTRACTOR                                                                                                                                                                                                                                                                                         | 11.1  | 207.2                                                                                                                                                                                                                                                                 | 15.5  | 12.2                                                                                                                                                                                                                         | 6.8   | 150.1                                                                                                                                                                                  | 22.6  | <lod< td=""><td>40.4</td><td>. 17395</td><td>340</td><td>1320</td><td>180</td><td><lod< td=""><td>645</td></lod<></td></lod<>                | 40.4  | . 17395 | 340   | 1320                                                                     | 180  | <lod< td=""><td>645</td></lod<>    | 645    |
|    | 76 Cr mine talus             | 9/14/2003 21:44 | 297.4                                                                                                                                                                                                                                                                                                         | 16.2  | 574.8                                                                                                                                                                                                                                                                 | 23.2  | 13.1                                                                                                                                                                                                                         | 8.3   | 1590                                                                                                                                                                                   | 47.9  | 115.9                                                                                                                                        | 37    | 17190   | 320   | 1490                                                                     | 170  | <lod< td=""><td>600</td></lod<>    | 600    |
| 15 | 76 Cr Sidney mine dump-N     | 9/14/2003 21:52 | 323.4                                                                                                                                                                                                                                                                                                         | 16.2  | 518.8                                                                                                                                                                                                                                                                 | 22.1  | 13.1                                                                                                                                                                                                                         | 7.9   | 1709                                                                                                                                                                                   | 48    | 116.1                                                                                                                                        | 36.1  | 16000   | 300   | 1510                                                                     | 160  | <lod< td=""><td>555</td></lod<>    | 555    |
| 16 | 76 Cr Sidney mine dump-E     | 9/14/2003 22:01 | 102.7                                                                                                                                                                                                                                                                                                         | 20.3  | 9984                                                                                                                                                                                                                                                                  | 170   | 134.2                                                                                                                                                                                                                        | 38.2  | <lod< td=""><td>60.6</td><td>101.1</td><td>56.4</td><td>63590</td><td>1200</td><td>3338</td><td>480</td><td><lod< td=""><td>1454.4</td></lod<></td></lod<>                             | 60.6  | 101.1                                                                                                                                        | 56.4  | 63590   | 1200  | 3338                                                                     | 480  | <lod< td=""><td>1454.4</td></lod<> | 1454.4 |
| 17 | 76 Cr down gradient          | 9/14/2003 22:10 | 122.6                                                                                                                                                                                                                                                                                                         | 10.7  | 588.4                                                                                                                                                                                                                                                                 | 20    | 16                                                                                                                                                                                                                           | 7.4   | 232.2                                                                                                                                                                                  | 22.1  | 51.4                                                                                                                                         | 24.5  | 18189   | 310   | 1370                                                                     | 160  | <lod< td=""><td>555</td></lod<>    | 555    |
| 18 | 76 Cr dump-East              | 9/14/2003 22:18 | 115.1                                                                                                                                                                                                                                                                                                         | 20    | 17997                                                                                                                                                                                                                                                                 | 240   | 185.8                                                                                                                                                                                                                        | 45.5  | <lod< td=""><td>62.1</td><td>389.4</td><td>61.6</td><td>136909</td><td>1899</td><td>7456</td><td>640</td><td><lod< td=""><td>1800</td></lod<></td></lod<>                              | 62.1  | 389.4                                                                                                                                        | 61.6  | 136909  | 1899  | 7456                                                                     | 640  | <lod< td=""><td>1800</td></lod<>   | 1800   |
| 19 | Concentrator level 1-East    | 9/14/2003 22:27 | 4268.8                                                                                                                                                                                                                                                                                                        | 88.4  | 10298                                                                                                                                                                                                                                                                 | 160   | 70.4                                                                                                                                                                                                                         | 36.1  | 4349                                                                                                                                                                                   | 110   | 997.6                                                                                                                                        | 90    | 50176   | 860   | 13696                                                                    | 540  | <lod< td=""><td>1950</td></lod<>   | 1950   |
| 20 | Concentrator level 1-West    | 9/14/2003 22:35 | 5827.2                                                                                                                                                                                                                                                                                                        | 98.4  | 2339.2                                                                                                                                                                                                                                                                | 88.8  | 60.4                                                                                                                                                                                                                         | 23.1  | 167.1                                                                                                                                                                                  | 35.5  | 250.8                                                                                                                                        | 44.5  | 18995   | 430   | 1050                                                                     | 220  | <lod< td=""><td>765</td></lod<>    | 765    |
| 21 | Concentrator level 2-East    | 9/14/2003 22:44 | 6438.4                                                                                                                                                                                                                                                                                                        | 130   | 27981                                                                                                                                                                                                                                                                 | 400   | 242                                                                                                                                                                                                                          | 65.6  | 216.2                                                                                                                                                                                  | 57.5  | 391.8                                                                                                                                        | 71    | 74598   | 1300  | 4410                                                                     | 550  | <lod< td=""><td>1650</td></lod<>   | 1650   |
| 22 | Concentrator level 2-West    | 9/14/2003 22:52 | 11494.4                                                                                                                                                                                                                                                                                                       | 240   | 17190                                                                                                                                                                                                                                                                 | 350   | 1140                                                                                                                                                                                                                         | 79.8  | 2010                                                                                                                                                                                   | 140   | 3878                                                                                                                                         | 210   | 88166   | 1800  | 4819                                                                     | 680  | <lod< td=""><td>2400</td></lod<>   | 2400   |
| 23 | Concentrator level 4-Center  | 9/14/2003 23:03 | 916.8                                                                                                                                                                                                                                                                                                         | 39.9  | 5440                                                                                                                                                                                                                                                                  | 99.7  | 881.6                                                                                                                                                                                                                        | 38.6  | 1779                                                                                                                                                                                   | 93.9  | 3709                                                                                                                                         | 150   | 112947  | 1500  | 4730                                                                     | 540  | 5958                               | 1300   |
| 24 | Concentrator level 5-East    | 9/14/2003 23:18 | 4729.6                                                                                                                                                                                                                                                                                                        | 120   | 21888                                                                                                                                                                                                                                                                 | 340   | 827.2                                                                                                                                                                                                                        | 68.8  | 466.4                                                                                                                                                                                  | 76    | 1110                                                                                                                                         | 110   | 46899   | 1000  | 1850                                                                     | 450  | 2720                               | 1200   |
| 25 | Concentrator level 5-West    | 9/14/2003 23:26 | 1480                                                                                                                                                                                                                                                                                                          | 70.4  | 26099                                                                                                                                                                                                                                                                 | 450   | 570.8                                                                                                                                                                                                                        | 77.1  | 266.6                                                                                                                                                                                  | 67    | <lod< td=""><td>117</td><td>86784</td><td>1800</td><td>3779</td><td>670</td><td><lod< td=""><td>2100</td></lod<></td></lod<>                 | 117   | 86784   | 1800  | 3779                                                                     | 670  | <lod< td=""><td>2100</td></lod<>   | 2100   |
| 26 | Pride/Mystery Tram Terminal  | 9/14/2003 23:34 | 11494.4                                                                                                                                                                                                                                                                                                       | 240   | 9977.6                                                                                                                                                                                                                                                                | 250   | 545.2                                                                                                                                                                                                                        | 63.7  | 943.2                                                                                                                                                                                  | 99.4  | 1340                                                                                                                                         | 130   | 77875   | 1600  | 2810                                                                     | 620  | <lod< td=""><td>2100</td></lod<>   | 2100   |
| 27 | Pride/Mystery Tram Terminal  | 9/14/2003 23:43 | 9395.2                                                                                                                                                                                                                                                                                                        | 150   | 4518.4                                                                                                                                                                                                                                                                | 130   | 224                                                                                                                                                                                                                          | 34.9  | 297.8                                                                                                                                                                                  | 47.6  | 368.8                                                                                                                                        | 55.5  | 37094   | 700   | 1970                                                                     | 330  | <lod< td=""><td>1050</td></lod<>   | 1050   |
| 28 | Comet Mine Bunker-South      | 9/14/2003 23:51 | 3209.6                                                                                                                                                                                                                                                                                                        | 97.6  | 48486                                                                                                                                                                                                                                                                 | 700   | 760.8                                                                                                                                                                                                                        | 93.2  | 205                                                                                                                                                                                    | 66.4  | 122.7                                                                                                                                        | 76.8  | 117965  | 2000  | 6726                                                                     | 740  | <lod< td=""><td>2250</td></lod<>   | 2250   |
| 29 | Comet Mine Bunker-North      | 37879.00021     | 1409.6                                                                                                                                                                                                                                                                                                        | 45    | 6988.8                                                                                                                                                                                                                                                                | 110   | 48.1                                                                                                                                                                                                                         | 26.8  | 440.8                                                                                                                                                                                  | 40.3  | 81.3                                                                                                                                         | 41.4  | 47078   | 770   | 3859                                                                     | 360  | <lod< td=""><td>1125</td></lod<>   | 1125   |
| 30 | RR Track at Power House      | 37879.00649     | 39.6                                                                                                                                                                                                                                                                                                          | 10.5  | 275                                                                                                                                                                                                                                                                   | 18.6  | 15.4                                                                                                                                                                                                                         | 8.4   | 151.7                                                                                                                                                                                  | 27.4  | 74.9                                                                                                                                         | 34.2  | 26291   | 510   | 1640                                                                     | 250  | <lod< td=""><td>795</td></lod<>    | 795    |
| 31 | Glacier Creek above Conctrtr | 37879.01144     | 23.1                                                                                                                                                                                                                                                                                                          | 10.1  | 105.4                                                                                                                                                                                                                                                                 | 14.4  | <lod< td=""><td>11.7</td><td>88.2</td><td>27.6</td><td>89</td><td>37</td><td>15693</td><td>410</td><td>1070</td><td>220</td><td><lod< td=""><td>780</td></lod<></td></lod<>                                                  | 11.7  | 88.2                                                                                                                                                                                   | 27.6  | 89                                                                                                                                           | 37    | 15693   | 410   | 1070                                                                     | 220  | <lod< td=""><td>780</td></lod<>    | 780    |
| 32 | Glacier Creek below Conctrtr | 37879.01686     | 38.8                                                                                                                                                                                                                                                                                                          | 8     | 148.2                                                                                                                                                                                                                                                                 | 11.9  | 9.2                                                                                                                                                                                                                          | 5.8   | 105.8                                                                                                                                                                                  | 20.1  | 80                                                                                                                                           | 26.1  | 19494   | 340   | 1350                                                                     | 180  | <lod< td=""><td>600</td></lod<>    | 600    |
| 33 | So Fork Sauk River-Lake MC   | 37879.02396     | 91.2                                                                                                                                                                                                                                                                                                          | 8.8   | 292.8                                                                                                                                                                                                                                                                 | 13.9  | <lod< td=""><td>8.25</td><td>115.8</td><td>17.2</td><td>65.5</td><td>21.4</td><td>11398</td><td>220</td><td>670.8</td><td>120</td><td><lod< td=""><td>435</td></lod<></td></lod<>                                            | 8.25  | 115.8                                                                                                                                                                                  | 17.2  | 65.5                                                                                                                                         | 21.4  | 11398   | 220   | 670.8                                                                    | 120  | <lod< td=""><td>435</td></lod<>    | 435    |

Appendix B-2. In-situ XRF results from Site Hazard Assessment for SHA for Monte Cristo Mine Area, Snohomish County, Washington (from Crofoot and O'Brien, 2004).

Table 5. Comparison of SHA Soil Results with Previous Study and Regional Background Metal Concentration Levels for Monte Cristo Mine Area, Snohomish County, Washington

Results in bold exceed Model Toxics Control Act Cleanup Level or other standard or criterion.

| Soil Analytical Results, mg/kg |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic                                                        | Cadmium                                       | Chromium                          | Lead                           | Mercury      | Nickel            | Copper                        | Silver         | Zinc                | Antimony       | Pb:As                                         |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------|--------------------------------|--------------|-------------------|-------------------------------|----------------|---------------------|----------------|-----------------------------------------------|
| No                             | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | As                                                             | Cd                                            | Cr                                | Pb                             | Hg           | Ni                | Cu                            | Ag             | Zn                  | Sb             | Ratio                                         |
| 3394095                        | Glacier Creek Headwater Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122                                                            | 0.65                                          | 16.4                              | 26.3                           | 0.874        | 12.1              | 21.7                          | 0.18           | 123                 | 0.43           | 0.2                                           |
| 3394096                        | Pride of Mountain Mine Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 332                                                            | 1.89                                          | 9.71                              | 130                            | 0.528        | 7.9               | 48                            | 0.45           | 328                 | 0.57 J         | 0.3                                           |
| 3394097                        | Pride of Woods Mine Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41400                                                          | 2.42                                          | 12.1                              | 2760                           | 8.61         | ND>5.0            | 517                           | 49.1           | 271                 | 416            | 0.0                                           |
| 10531                          | Justice Mine Adit Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4900                                                           | 6.75                                          | U>0.232                           | 228                            | 0.61         | 15.7              | 93.3                          | U>0.232        | 312                 | 12             | 0.4                                           |
| 3394098                        | Comet Mine Bunker Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31200                                                          | 9.12                                          | 11.0                              | 7340                           | 2.28         | 11.3              | 212                           | 17             | 180                 | 168            | 0.2                                           |
| 3374087                        | Comet Mine Bunker South Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14700                                                          | 2.29                                          | 11.1                              | 1950                           | 0.368        | 12.1              | 78                            | 5.39           | 435                 | 719            | 0.13                                          |
| 10532                          | Comet Mystery Tram Terminal Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8450                                                           | 8.33                                          | U>0.240                           | 20400                          | 4.47         | U>0.481           | 1160                          | 320            | 882                 | 133            | 2.4                                           |
| 10529                          | Concentrator Level 1 West Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3460                                                           | 4.13                                          | 2.44                              | 9580                           | 8.5          | U>0.469           | 378                           | 126            | 149                 | 1365           | 2.8                                           |
| 10530                          | Concentrator Level 1 East Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34900                                                          | 11.4                                          | 5.74                              | 7000                           | 7.07         | 0.604             | 516                           | 115            | 852                 | 4582           | 0.2                                           |
| 3374086                        | Concentrator Level 2 West Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14600                                                          | 1.54                                          | 1.5                               | 16300                          | 4.33         | 3.26              | 1340                          | 118            | 471                 | 3990           | 1.                                            |
| 3374088                        | So Fork Sauk River-Lake MC* Sedimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t 1090                                                         | 3.9                                           | 36.6                              | 278                            | 0.0911       | 96.5              | 207                           | 6.94           | 806                 | 15.7           | 0.2                                           |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                               |                                   |                                |              |                   |                               |                |                     |                |                                               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                               |                                   |                                |              |                   |                               |                |                     |                |                                               |
| Previous Stu                   | The state of the s | ,                                                              | 0.79                                          | USUZE                             |                                | 0.51.89      | name.             |                               | 1150.50        |                     | 0.20           | Pb:As                                         |
| Previous Stu<br>Wolff 2003     | udy, mg/kg<br>Mystery Adit 3 Dump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14000                                                          | na                                            | na na                             | 1700                           | na           | na                | 500                           | na             | 1100                | na             |                                               |
|                                | The state of the s | 14000<br>15300                                                 | na<br>ND>1.11                                 | na<br>na                          | 1700<br>1450                   | na<br>na     | na<br>na          | 500<br>195                    | na<br>na       | 1100<br>113         | na<br>na       | 0.15                                          |
|                                | Mystery Adit 3 Dump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                               |                                   |                                |              |                   |                               |                |                     | 1.3.0 1        | Pb:As<br>0.15<br>0.09<br>0.40                 |
| Wolff 2003                     | Mystery Adit 3 Dump<br>Pride of Woods Dump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15300<br>17300                                                 | ND>1.11<br>7.29                               | na<br>na                          | 1450                           | na           | na                | 195                           | na             | 113                 | na             | 0.13                                          |
| Wolff 2003                     | Mystery Adit 3 Dump<br>Pride of Woods Dump<br>Pride of Mountains Adit 1Dump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15300<br>17300                                                 | ND>1.11<br>7.29                               | na<br>na                          | 1450                           | na           | na                | 195<br>1010                   | na<br>na       | 113<br>941          | na<br>na       | 0.1:<br>0.09<br>0.40                          |
| Wolff 2003                     | Mystery Adit 3 Dump Pride of Woods Dump Pride of Mountains Adit 1Dump  ekground Soil Metal Concentrations** at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15300<br>17300<br>t 90th Percentile                            | ND>1.11<br>7.29<br>Values, mg/                | na<br>na                          | 1450<br>7040                   | na<br>na     | na<br>na<br>38.19 | 195<br>1010<br>36.36          | na<br>na       | 113<br>941<br>85.06 | na<br>na<br>na | 0.1.<br>0.0.<br>0.4.<br><b>Pb:As</b><br>0.7.  |
| Wolff 2003                     | Mystery Adit 3 Dump Pride of Woods Dump Pride of Mountains Adit 1Dump  ekground Soil Metal Concentrations** at Puget Sound Lowland n=45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15300<br>17300<br>t 90th Percentile<br>22.80                   | ND>1.11<br>7.29<br>Values, mg/<br>0.77        | na<br>na<br>/kg<br>48.15          | 1450<br>7040                   | na<br>na     | na<br>na          | 195<br>1010                   | na<br>na       | 113<br>941          | na<br>na       | 0.1.<br>0.00<br>0.40<br>Pb:As<br>0.7:<br>0.44 |
| Wolff 2003<br>Natural Bac      | Mystery Adit 3 Dump Pride of Woods Dump Pride of Mountains Adit 1Dump  Ekground Soil Metal Concentrations** at Puget Sound Lowland n=45 Western Washington n=86 Washington Statewide n=166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15300<br>17300<br>t 90th Percentile<br>22.80<br>46.21          | ND>1.11<br>7.29<br>Values, mg<br>0.77<br>1.20 | na<br>na<br>/kg<br>48.15<br>47.40 | 1450<br>7040<br>16.83<br>20.42 | 0.07<br>0.08 | 38.19<br>44.20    | 195<br>1010<br>36.36<br>43.23 | na<br>na<br>na | 85.06<br>98.39      | na<br>na<br>na | 0.1.<br>0.00<br>0.40<br>Pb:As<br>0.7:<br>0.44 |
| Wolff 2003<br>Natural Bac      | Mystery Adit 3 Dump Pride of Woods Dump Pride of Mountains Adit 1Dump  Ekground Soil Metal Concentrations** at Puget Sound Lowland n=45 Western Washington n=86 Washington Statewide n=166  Inup Level, mg/kg  Can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15300<br>17300<br>t 90th Percentile<br>22.80<br>46.21<br>41.81 | ND>1.11<br>7.29<br>Values, mg<br>0.77<br>1.20 | na na Nkg 48.15 47.40 41.88       | 1450<br>7040<br>16.83<br>20.42 | 0.07<br>0.08 | 38.19<br>44.20    | 195<br>1010<br>36.36<br>43.23 | na<br>na<br>na | 85.06<br>98.39      | na<br>na<br>na | 0.1:<br>0.09<br>0.40<br><b>Pb:As</b>          |

<sup>\*</sup> South Fork of Sauk River sediment where river flows into Lake Monte Cristo, six miles north of Monte Cristo Mine Area.

ND>0.10 or U>0.10 = Metal not detected above level specified; in this example not above 0.10 mg/kg.

Appendix B-3. Laboratory analytical results for soils samples from Site Hazard Assessment and applicable comparison criteria. MTCA cleanup levels are listed at the bottom of the table for comparison to the XRF data in Appendix B-2 (from Crofoot and O'Brien, 2004).

na = not available or not analyzed.

J = metal was positively identified, result is estimated.

<sup>\*\*</sup> Natural Background Soil Metal Concentrations at 90th Percentile Values in mg/kg from Ecology Publication #94-115, October 1994, page 6-4, table 7.

Table 6. Comparison of SHA Water Results with Previous Study and Cleanup Levels for Monte Cristo Mine Area, Snohomish County, Washington

Results in bold exceed Model Toxics Control Act Cleanup Level or Washington Water Quality Criterion or other standard.

| Water Analytical Results, ug/L              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 76 Creek Headwater                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 76 Creek Sidney Mine Dump                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Glacier Creek Headwater                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Glacier Creek POM Mine                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Glacier Creek POM Mine N                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Creek at Justice Mine                       | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Creek below Justice Mine                    | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Glacier Creek below Concentrator+           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Glacier Creek Below Concentrator+           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| So Fork Sauk River at Lake MC*              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| idy, ug/L                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Glacier Creek Upstream-High Flow            | - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Glacier Creek Upstream-Low Flow             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.80 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Glacier Creek Downstream-High Flow          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Glacier Creek Downstream-Low Flow           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| nup Level or Other, ug/L                    | Carc/Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ncarcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CrIII/CrVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| od B Surface Water (Aug 2001)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0982/17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 243000/486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Quality Criteria-Human Health**             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Qual Cri -Aquatic Life Acute**              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1114.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Wash Water Qual Cri -Aquatic Life Chronic** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 141/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 123.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| T O (                                       | 76 Creek Headwater 76 Creek Sidney Mine Dump Glacier Creek Headwater Glacier Creek POM Mine Glacier Creek POM Mine N Creek at Justice Mine Creek below Justice Mine Glacier Creek below Concentrator+ Glacier Creek Below Concentrator+ So Fork Sauk River at Lake MC*  dy, ug/L Glacier Creek Upstream-High Flow Glacier Creek Downstream-High Flow Glacier Creek Downstream-High Flow Glacier Creek Downstream-Low Flow | 76 Creek Headwater 76 Creek Sidney Mine Dump 9 Glacier Creek Headwater 8 Glacier Creek Headwater 8 Glacier Creek POM Mine 8 Glacier Creek POM Mine N Creek at Justice Mine 104 Creek below Justice Mine 99 Glacier Creek below Concentrator+ 8 Glacier Creek Below Concentrator+ 9 So Fork Sauk River at Lake MC* 12  dy, ug/L Glacier Creek Upstream-High Flow 6 Glacier Creek Upstream-Low Flow 7 Glacier Creek Downstream-High Flow 7 Glacier Creek Downstream-High Flow 7 Glacier Creek Downstream-Low Flow 8 Glacier Creek Downstream-Low Flow 9 Glacier Creek Downstream-Low Flow | 76 Creek Headwater 5 U>0.50 76 Creek Sidney Mine Dump 9 9.64 Glacier Creek Headwater 8 1.70 Glacier Creek POM Mine 8 3.80 Glacier Creek POM Mine N 8 3.60 Creek at Justice Mine 104 235 Creek below Justice Mine 99 264 Glacier Creek Below Concentrator+ 8 7.89 Glacier Creek Below Concentrator+ 9 12.2 So Fork Sauk River at Lake MC* 12 27.4  dy, ug/L Glacier Creek Upstream-High Flow 8 0.28 Glacier Creek Upstream-High Flow 7 7.37 Glacier Creek Downstream-High Flow 7 7.37 Glacier Creek Downstream-Low Flow 7 9.24  nup Level or Other, ug/L Carc/Noncarcinogen of B Surface Water (Aug 2001) 0.0982/17.7 Quality Criteria-Human Health** 8 0.018 | 76 Creek Headwater         5         U>0.50         U>0.10           76 Creek Sidney Mine Dump         9         9.64         U>0.10           Glacier Creek Headwater         8         1.70         U>0.10           Glacier Creek POM Mine         8         3.80         U>0.10           Glacier Creek POM Mine N         8         3.60         U>0.10           Creek at Justice Mine         104         235         0.14           Creek below Justice Mine         99         264         0.48           Glacier Creek below Concentrator+         8         7.89         U>0.10           Glacier Creek Below Concentrator+         9         12.2         U>0.10           So Fork Sauk River at Lake MC*         12         27.4         U>0.10           dy, ug/L         Glacier Creek Upstream-High Flow         7         4.52         U>0.02           Glacier Creek Upstream-Low Flow         7         7.37         0.04           Glacier Creek Downstream-High Flow         7         7.37         0.04           Glacier Creek Downstream-Low Flow         7         9.24         0.04    The property of the propert | 76 Creek Headwater         5         U>0.50         U>0.10         U>0.50           76 Creek Sidney Mine Dump         9         9.64         U>0.10         U>0.50           Glacier Creek Headwater         8         1.70         U>0.10         U>0.50           Glacier Creek POM Mine         8         3.80         U>0.10         U>0.50           Glacier Creek POM Mine N         8         3.60         U>0.10         U>0.50           Creek at Justice Mine         104         235         0.14         U>0.50           Creek below Justice Mine         99         264         0.48         U>0.50           Glacier Creek below Concentrator+         8         7.89         U>0.10         U>0.50           Glacier Creek Below Concentrator+         9         12.2         U>0.10         U>0.50           So Fork Sauk River at Lake MC*         12         27.4         U>0.10         U>0.50           dy, ug/L         Glacier Creek Upstream-High Flow         8         0.28         U>0.02         na           Glacier Creek Upstream-High Flow         7         7.37         0.04         na           Glacier Creek Downstream-Low Flow         7         9.24         0.04         na           Glacier Creek Downstream- | 76 Creek Headwater 5 U>0.50 U>0.10 U>0.50 0.12 76 Creek Sidney Mine Dump 9 9.64 U>0.10 U>0.50 0.19 Glacier Creek Headwater 8 1.70 U>0.10 U>0.50 U>0.19 Glacier Creek POM Mine 8 3.80 U>0.10 U>0.50 U>0.10 Glacier Creek POM Mine N 8 3.60 U>0.10 U>0.50 0.14 Glacier Creek POM Mine N 8 3.60 U>0.10 U>0.50 0.10 Creek at Justice Mine 104 235 0.14 U>0.50 1.26 Creek below Justice Mine 99 264 0.48 U>0.50 0.74 Glacier Creek below Concentrator+ 8 7.89 U>0.10 U>0.50 0.13 Glacier Creek Below Concentrator+ 9 12.2 U>0.10 U>0.50 0.29 So Fork Sauk River at Lake MC* 12 27.4 U>0.10 U>0.50 0.63  dy, ug/L Glacier Creek Upstream-High Flow 8 0.28 U>0.02 na 0.03 Glacier Creek Downstream-High Flow 7 7.37 0.04 na 0.02 Glacier Creek Downstream-High Flow 7 9.24 0.04 na U>0.02 Glacier Creek Downstream-Low Flow 7 9.24 0.04 na U>0.02  mup Level or Other, ug/L Carc/Noncarcinogen CrIII/CrVI od B Surface Water (Aug 2001) 0.0982/17.7 20.3 243000/486 na 0.002 Quality Criteria-Human Health** 8 0.018 na na na | 76 Creek Headwater 5 U>0.50 U>0.10 U>0.50 0.12 U>0.050 76 Creek Sidney Mine Dump 9 9.64 U>0.10 U>0.50 0.19 U>0.050 Glacier Creek Headwater 8 1.70 U>0.10 U>0.50 U>0.10 U>0.50 Glacier Creek PoM Mine 8 3.80 U>0.10 U>0.50 U>0.14 U>0.050 Glacier Creek POM Mine N 8 3.60 U>0.10 U>0.50 0.14 U>0.050 Creek at Justice Mine 104 235 0.14 U>0.50 1.26 U>0.050 Creek at Justice Mine 99 264 0.48 U>0.50 0.74 U>0.050 Glacier Creek Below Concentrator+ 8 7.89 U>0.10 U>0.50 0.13 U>0.050 Glacier Creek Below Concentrator+ 9 12.2 U>0.10 U>0.50 0.29 U>0.050 So Fork Sauk River at Lake MC* 12 27.4 U>0.10 U>0.50 0.63 U>0.050  dy, ug/L Glacier Creek Upstream-High Flow 7 7.37 0.04 na 0.02 0.0058 Glacier Creek Downstream-High Flow 7 7.37 0.04 na 0.02 0.0058 Glacier Creek Downstream-Low Flow 7 9.24 0.04 na U>0.02 U>0.002  mup Level or Other, ug/L Carc/Noncarcinogen CrIII/CrVI od B Surface Water (Aug 2001) 0.0982/17.7 20.3 243000/486 na na na 0.14 | 76 Creek Headwater 5 U>0.50 U>0.10 U>0.50 0.12 U>0.050 U>0.50 76 Creek Sidney Mine Dump 9 9.64 U>0.10 U>0.50 0.19 U>0.050 U>0.50 Glacier Creek Headwater 8 1.70 U>0.10 U>0.50 U>0.10 U>0.50 U>0.50 Glacier Creek POM Mine 8 3.80 U>0.10 U>0.50 0.14 U>0.050 U>0.50 Glacier Creek POM Mine 8 3.60 U>0.10 U>0.50 0.14 U>0.050 U>0.50 Glacier Creek POM Mine N 8 3.60 U>0.10 U>0.50 0.10 U>0.50 U>0.50 Creek at Justice Mine 104 235 0.14 U>0.50 1.26 U>0.050 0.92 Creek below Justice Mine 99 264 0.48 U>0.50 0.74 U>0.050 1.19 Glacier Creek Below Concentrator+ 8 7.89 U>0.10 U>0.50 0.13 U>0.050 U>0.50 Glacier Creek Below Concentrator+ 9 12.2 U>0.10 U>0.50 0.13 U>0.050 U>0.50 Glacier Creek Below Concentrator+ 12 U>0.10 U>0.50 0.29 U>0.050 U>0.50 Glacier Creek Upstream-High Flow 8 0.28 U>0.10 U>0.50 0.63 U>0.050 U>0.50  dy, ug/L Glacier Creek Upstream-Low Flow 7 4.52 U>0.02 na 0.03 U>0.002 na Glacier Creek Downstream-High Flow 7 7.37 0.04 na 0.02 0.0058 na Glacier Creek Downstream-Low Flow 7 9.24 0.04 na U>0.02 U>0.005 na Glacier Creek Downstream-Low Flow 7 9.24 0.04 na U>0.02 U>0.002 na  Thup Level or Other, ug/L Carc/Noncarcinogen CrIII/CrVI od B Surface Water (Aug 2001) 0.0982/17.7 20.3 243000/486 na na na 0.14 610 Quality Criteria-Human Health** 8 0.018 na na na 0.14 610 | 76 Creek Headwater 5 U>0.50 U>0.10 U>0.50 0.12 U>0.050 U>0.50 0.18 76 Creek Sidney Mine Dump 9 9.64 U>0.10 U>0.50 0.19 U>0.050 U>0.50 0.26 Glacier Creek Headwater 8 1.70 U>0.10 U>0.50 U>0.10 U>0.50 U>0.50 U>0.50 U>0.50 Glacier Creek POM Mine 8 3.80 U>0.10 U>0.50 U>0.10 U>0.50 U>0.50 U>0.50 U>0.50 Glacier Creek POM Mine N 8 3.60 U>0.10 U>0.50 0.14 U>0.050 U>0.50 U>0.50 Glacier Creek POM Mine N 8 3.60 U>0.10 U>0.50 0.10 U>0.050 U>0.50 U>0.50 Creek at Justice Mine 104 235 0.14 U>0.50 1.26 U>0.050 U>0.50 U>0.50 Creek at Justice Mine 99 264 0.48 U>0.50 0.74 U>0.050 1.19 2.83 Glacier Creek below Concentrator+ 8 7.89 U>0.10 U>0.50 0.13 U>0.050 U>0.50 Glacier Creek Below Concentrator+ 9 12.2 U>0.10 U>0.50 0.13 U>0.050 U>0.50 0.67 Glacier Creek Below Concentrator+ 9 12.2 U>0.10 U>0.50 0.29 U>0.050 U>0.50 0.55 So Fork Sauk River at Lake MC* 12 27.4 U>0.10 U>0.50 0.63 U>0.050 U>0.50 1.41  dy, ug/L Glacier Creek Upstream-High Flow 8 0.28 U>0.02 na U>0.02 0.0042 na U>0.05 1.41  dy, ug/L Glacier Creek Downstream-High Flow 7 7.37 0.04 na 0.02 0.0058 na 0.26 Glacier Creek Downstream-Low Flow 7 9.24 0.04 na 0.02 0.0058 na 0.31 Glacier Creek Downstream-Low Flow 7 9.24 0.04 na 0.02 U>0.005 na 0.27  mup Level or Other, ug/L GB Surface Water (Aug 2001) 0.0982/17.7 20.3 243000/486 na na na 1100 2660 Quality Criteria-Human Health** 8 0.018 na na na 0.14 610 na | 76 Creek Headwater 5 U>0.50 U>0.10 U>0.50 0.12 U>0.050 U>0.50 0.18 U>0.10 76 Creek Sidney Mine Dump 9 9.64 U>0.10 U>0.50 0.19 U>0.50 U>0.50 0.26 U>0.10 Glacier Creek Headwater 8 1.70 U>0.10 U>0.50 U>0.50 U>0.10 U>0.50 U>0.50 U>0.50 U>0.50 U>0.50 U>0.10 U>0.50 U>0.50 U>0.50 U>0.10 U>0.50 U>0.50 U>0.10 U>0.50 U>0.50 U>0.50 U>0.10 U>0.50 U>0.50 U>0.50 U>0.10 U>0.50 U>0.50 U>0.50 U>0.50 U>0.10 U>0.50 U>0.50 U>0.50 U>0.50 U>0.10 U>0.50 U>0.50 U>0.50 U>0.50 U>0.50 U>0.10 U>0.50 U | 76 Creek Headwater 5 U>0.50 U>0.10 U>0.50 0.12 U>0.050 U>0.50 0.18 U>0.10 U>5.0 76 Creek Sidney Mine Dump 9 9.64 U>0.10 U>0.50 0.19 U>0.50 U>0.50 U>0.50 U>0.26 U>0.10 U>5.0 Glacier Creek Headwater 8 1.70 U>0.10 U>0.50 U>0.50 U>0.10 U>0.50 U>0.10 U>5.0 Glacier Creek POM Mine 8 3.80 U>0.10 U>0.50 0.14 U>0.50 U>0.50 U>0.50 U>0.50 U>0.50 U>0.50 U>0.50 U>0.10 U>0.50 Glacier Creek POM Mine N 8 3.60 U>0.10 U>0.50 0.10 U>0.50 U>0.50 U>0.50 U>0.50 U>0.50 U>0.10 U>0.50 Creek at Justice Mine 104 235 0.14 U>0.50 1.26 U>0.050 0.92 4.22 U>0.10 U>0.50 Creek below Justice Mine 99 264 0.48 U>0.50 0.74 U>0.50 0.19 2.83 U>0.10 56.8 Glacier Creek Below Concentrator+ 8 7.89 U>0.10 U>0.50 0.13 U>0.50 0.50 U>0.50 0.67 U>0.10 U>5.6 Glacier Creek Below Concentrator+ 9 12.2 U>0.10 U>0.50 0.13 U>0.50 U>0.50 0.55 U>0.10 U>5.0 So Fork Sauk River at Lake MC* 12 27.4 U>0.10 U>0.50 0.63 U>0.50 U>0.50 0.55 U>0.10 U>5.0 Glacier Creek Upstream-Low Flow 7 4.52 U>0.02 na 0.03 U>0.050 U>0.50 1.41 U>0.10 U>5.0 Glacier Creek Downstream-High Flow 7 7.37 0.04 na 0.02 0.0058 na 0.31 na 5.04 Glacier Creek Downstream-Low Flow 7 7.37 0.04 na 0.02 0.0058 na 0.31 na 5.04 Glacier Creek Downstream-Low Flow 7 7.37 0.04 na 0.02 U>0.002 na 0.27 na 5.75  **Total Care/Noncarcinogen Crill/CrVI total Surface Water (Aug 2001) 0.0982/17.7 20.3 243000/486 na na na 1100 2660 25900 16500 Quality Criteria-Human Health** 8 0.018 na na na 0.14 610 na na na |

<sup>\*</sup> South Fork of Sauk River where river flows into Lake Monte Cristo, six miles north of Monte Cristo Mine Area.

Appendix B-4. Comparison of SHA water sample results with previous studies and cleanup levels for Monte Cristo Mine Area, Snohomish County, Washington (from Crofoot and O'Brien, 2004).

na = not available or not analyzed.

U>0.10 = Metal not detected above level specified; in this example not detected above 0.10 ug/L.

J = metal was positively identified, result is estimated.

<sup>\*\*</sup> See Appendix C or formulae are shown in http://www.ecy.wa.gov/pubs/was17320a.pdf

## Appendix C NITON XRF ANALYTICAL DATA SUMMARY

Map of Sidney Mine and Associated Sample Sites



**Table** 

**Table 1**. Analytical results for Sidney Mine waste rock dump; composite sample from northwest half of dump.

Mine: Sidney Sample Number: MC-76-2A

| SAMPLE | ANALYTE                                       | ANALYTICAL<br>RESULT<br>(mg/kg) <sup>1</sup> | MTCA<br>Method A<br>(mg/kg) <sup>2</sup> | EPA<br>REGION IX<br>PRG (mg/kg) <sup>3</sup> | SIMPLIFIED<br>ECOLOGICAL<br>EVALUATION<br>(mg/kg) <sup>4</sup> |  |
|--------|-----------------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------------------------|--|
|        | Antimony                                      | 59.5                                         |                                          | 410                                          |                                                                |  |
|        | Total Arsenic<br>Arsenic III<br>Arsenic V     | 40,780.8                                     | 20                                       | 1.6                                          | 20<br>260                                                      |  |
|        | Cadmium                                       | BDL (42)                                     | 2                                        | 450                                          | 36                                                             |  |
|        | Total Chromium<br>Chromium VI<br>Chromium III | 2,480                                        | 19<br>2,000                              | <b>450</b><br>64<br>100,000                  | 135                                                            |  |
|        | Cobalt                                        | BDL (1,380)                                  | -                                        | 1,900                                        |                                                                |  |
|        | Copper                                        | 471.2                                        |                                          | 41,000                                       | 550                                                            |  |
|        | Iron                                          | 149,900                                      |                                          | 100,000                                      |                                                                |  |
|        | Lead                                          | 518                                          | 1,000                                    | 800                                          | 220                                                            |  |
|        | Manganese                                     | BDL (2,250)                                  |                                          | 19,000                                       | 23,500                                                         |  |
|        | Mercury                                       | BDL (210)                                    | 2                                        | 310                                          | Inorganic - 9<br>Organic7                                      |  |
|        | Molybdenum                                    | BDL (8.4)                                    |                                          | 5,100                                        | 71                                                             |  |
|        | Nickel                                        | BDL (420)                                    |                                          | 20,000                                       | 1,850                                                          |  |
|        | Selenium                                      | BDL (78.15)                                  |                                          | 5,100                                        | .8                                                             |  |
|        | Silver                                        | BDL (165)                                    |                                          | 5,100                                        |                                                                |  |
|        | Tin                                           | 282.2                                        |                                          | 100,000                                      | (275)                                                          |  |
|        | Zinc                                          | 323.8                                        |                                          | 100,000                                      | 570                                                            |  |

<sup>&</sup>lt;sup>1</sup> BDL-Below Detection Limit; detection limit in mg/kg is indicated in parenthesis (e.g. BDL (450))

<sup>&</sup>lt;sup>2</sup> From WAC 173-340-900, Table 745-1, MTCA Method A Cleanup Levels for Industrial Properties.

<sup>&</sup>lt;sup>3</sup> From EPA, Region IX, Preliminary Remediation Goals, October, 2004, available at http://www.epa.gov/region9/waste/sfund/prg/index.html.

<sup>&</sup>lt;sup>4</sup> From WAC 173-340-900, Table 749-2, Priority Contaminants of Ecological Concern for Sites that Qualify for the Simplified Terrestrial Ecological Evaluation Procedure. All concentrations are for industrial/commercial sites; if unavailable, unrestricted land use values denoted with parenthesis ( ) were utilized.

**Table 2**. Analytical results for Sidney Mine waste rock dump; composite sample from southeast half of dump.

Mine: Sidney Sample Number: MC-GC-2B

| SAMPLE    | ANALYTE                                       | ANALYTICAL<br>RESULT<br>(mg/kg) <sup>1</sup> | MTCA<br>Method A<br>(mg/kg) <sup>2</sup> | EPA<br>REGION IX<br>PRG (mg/kg) <sup>3</sup> | SIMPLIFIED<br>ECOLOGICAL<br>EVALUATION<br>(mg/kg) <sup>4</sup> |  |
|-----------|-----------------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------------------------|--|
|           | Antimony                                      | 80.2                                         |                                          | 410                                          |                                                                |  |
|           | Total Arsenic<br>Arsenic III<br>Arsenic V     | 7,654.4                                      | 20                                       | 1.6                                          | 20<br>260                                                      |  |
|           | Cadmium                                       | BDL (34.35)                                  | 2                                        | 450                                          | 36                                                             |  |
|           | Total Chromium<br>Chromium VI<br>Chromium III | 1,009.6                                      | 19<br>2,000                              | <b>450</b><br>64<br>100,000                  | 135                                                            |  |
|           | Cobalt                                        | 566                                          |                                          | 1,900                                        |                                                                |  |
|           | Copper                                        | 101.8                                        |                                          | 41,000                                       | 550                                                            |  |
|           | Iron                                          | 65,300                                       |                                          | 100,000                                      |                                                                |  |
|           | Lead                                          | 242.6                                        | 1,000                                    | 800                                          | 220                                                            |  |
|           | Manganese                                     | BDL (915)                                    |                                          | 19,000                                       | 23,500                                                         |  |
|           | Mercury                                       | BDL (65.7)                                   | 2                                        | 310                                          | Inorganic - 9<br>Organic7                                      |  |
|           | Molybdenum                                    | BDL (6.0)                                    |                                          | 5,100                                        | 71                                                             |  |
|           | Nickel                                        | BDL (195)                                    |                                          | 20,000                                       | 1,850                                                          |  |
|           | Selenium                                      | BDL (26.1)                                   |                                          | 5,100                                        | .8                                                             |  |
|           | Silver                                        | BDL (137.4)                                  |                                          | 5,100                                        |                                                                |  |
|           | Tin                                           | 174.5                                        | _                                        | 100,000                                      | (275)                                                          |  |
| 1 ppr p r | Zinc                                          | 246.6                                        | //                                       | 100,000                                      | 570                                                            |  |

<sup>&</sup>lt;sup>1</sup> BDL-Below Detection Limit; detection limit in mg/kg is indicated in parenthesis (e.g. BDL (450))

<sup>&</sup>lt;sup>2</sup> From WAC 173-340-900, Table 745-1, MTCA Method A Cleanup Levels for Industrial Properties.

<sup>&</sup>lt;sup>3</sup> From EPA, Region IX, Preliminary Remediation Goals, October, 2004, available at http://www.epa.gov/region9/waste/sfund/prg/index.html.

<sup>&</sup>lt;sup>4</sup> From WAC 173-340-900, Table 749-2, Priority Contaminants of Ecological Concern for Sites that Qualify for the Simplified Terrestrial Ecological Evaluation Procedure. All concentrations are for industrial/commercial sites; if unavailable, unrestricted land use values denoted with parenthesis ( ) were utilized.

# Appendix D WATER QUALITY ANALYTICAL DATA

Map of Sidney Mine and Associated Sample Sites



Table D-2. Field parameters for surface water samples along 76 Creek.

| Sample I.D.                 | Location                   | Date     | Temperature | рН   | Specific<br>Conductance | Turbidity | Dissolved<br>Oxygen | Total Dissolved Solids | Oxidation-<br>Reduction<br>Potential |
|-----------------------------|----------------------------|----------|-------------|------|-------------------------|-----------|---------------------|------------------------|--------------------------------------|
|                             |                            |          | (°C)        | (SU) | (mS/cm)                 | (NTU)     | (mg/L)              | (g/L)                  | (mV)                                 |
|                             |                            |          |             |      |                         |           |                     |                        |                                      |
| MC-76-1                     | 76 Creek above Sidney Mine | 8/3/2006 | 6.4         | 5.98 | 0.040                   | 1         | 11.94               | 0.03                   | 288                                  |
| MC-76-2                     | Sidney Mine effluent       | 8/3/2006 | 5.6         | 6.42 | 0.054                   | 7         | 12.24               | 0.04                   | 263                                  |
| MC-76-3                     | 76 Creek below Sidney Mine | 8/3/2006 | 7.0         | 6.37 | 0.040                   | 1         | 12.05               | 0.03                   | 266                                  |
|                             |                            |          |             |      |                         |           |                     |                        |                                      |
| POW=Pride of Woods Mine     |                            |          |             |      |                         |           |                     |                        |                                      |
| ND=New Discovery Mine       |                            |          |             |      |                         |           |                     |                        |                                      |
| POM=Pride of Mountains Mine |                            |          |             |      |                         |           |                     |                        | ·                                    |

Table D-3. Summary of surface water analytical data and applicable standards.

| Sample I.D.                                                                                                                                                                                    | Location                                           | Date                                    | Hardness as CaCO | Antimony (Sb)                    | Arsenic (As)     | Cadmium (Cd) | Copper (Cu)     | Lead (Pb)     | Nickel (Ni)   | Zinc (Zn)    | Sulfate (SO <sub>4</sub> <sup>2</sup> ) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|------------------|----------------------------------|------------------|--------------|-----------------|---------------|---------------|--------------|-----------------------------------------|
|                                                                                                                                                                                                |                                                    |                                         | mg/L             | Total Recoverable Metals in μg/L |                  |              |                 |               |               | mg/L         |                                         |
| MC-76-1<br>MC-76-2                                                                                                                                                                             | 76 Creek above Sidney Mine<br>Sidney Mine effluent | 8/3/2006<br>8/3/2006                    | 9                | 3.8<br>1.5 J                     | 5.8<br><b>19</b> | ND<br>ND     | 1.3 J<br>0.74 J | <b>0.23 J</b> | 4.7<br>0.32 J | 7.9<br>4.9 J | 1.6                                     |
| MC-76-3                                                                                                                                                                                        | 76 Creek below Sidney Mine                         | 8/3/2006                                | 8                | 3.1                              | ND               | ND           | 0.74 J          | 0.1 J         | 0.32 J        | 5.2          | 1.8                                     |
|                                                                                                                                                                                                |                                                    |                                         |                  |                                  |                  |              |                 |               |               |              |                                         |
| Applicable S                                                                                                                                                                                   | State Surface Water Standards                      |                                         |                  |                                  |                  |              |                 |               |               |              |                                         |
| Washington State Surface Water Quality Standards <sup>1</sup>                                                                                                                                  |                                                    |                                         | 8                | NS                               | 190              | 0.16         | 1.32            | 0.15          | 18.55         | 12.30        | NS                                      |
| Washington State Surface Water Quality Standards <sup>1</sup>                                                                                                                                  |                                                    |                                         | 9                | NS                               | 190              | 0.17         | 1.45            | 0.17          | 20.50         | 13.59        | NS                                      |
| Other Relev                                                                                                                                                                                    | ant Standards for Reference                        |                                         |                  |                                  |                  |              |                 |               |               |              |                                         |
| EPA Recommended Water Quality Criteria (Aquatic) <sup>2</sup>                                                                                                                                  |                                                    |                                         | 8.5              | NS                               | 150              | 0.04         | 1.09            | 0.16          | 6.46          | 14.63        | NS                                      |
|                                                                                                                                                                                                | ended Water Quality Criteria (Human Health-Wate    |                                         |                  | 5.6                              | 0.018            | NS           | 1300            | NS            | 610           | 7400         | NS                                      |
|                                                                                                                                                                                                | ended Water Quality Criteria (Human Health-Organ   | • • • • • • • • • • • • • • • • • • • • |                  | 640                              | 0.14             | NS           | NS              | NS            | 4600          | 26000        | NS                                      |
| Washington State Primary/Secondary Drinking Water Standards <sup>3</sup>                                                                                                                       |                                                    |                                         |                  | 6                                | 10               | 5            | 1300            | 15            | 100           | 5000         | 250                                     |
| ∐=∆nalvte n                                                                                                                                                                                    | ot detected at or above reported result            |                                         |                  |                                  |                  |              |                 |               |               |              |                                         |
| J=Result is less than Reporting Limit but greater than or equal to the Method                                                                                                                  |                                                    |                                         | d Detection      | Limit and                        | the conce        | entration is | s an approx     | imate val     | ne            |              |                                         |
| NS=Not Specified                                                                                                                                                                               |                                                    | <u> </u>                                |                  |                                  |                  | у шт црргот  |                 |               |               |              |                                         |
| Washington Administrative Code, Chapter 173-201A WAC, Water Quality Standards for Surface Waters of the State of Washington. Criteria in <i>italics</i> were corrected for associated hardness |                                                    |                                         |                  |                                  |                  |              |                 |               | ness value.   |              |                                         |
| <sup>2</sup> EPA, 2006, National Recommeded Water Quality Criteria. Citeria in <i>italics</i> are hardness dependant and were corrected for the average hardness of 76 Creek (8.5 mg/s)        |                                                    |                                         |                  |                                  |                  |              |                 |               |               |              |                                         |
| Washington Administrative Code, Chapter 246-290-310, Maximum Contaminant Levels (MCLs) and Maximum Residual Disinfectant Levels (MRDLs)                                                        |                                                    |                                         |                  |                                  |                  |              |                 |               |               | <i>3</i> =)· |                                         |

Appendix E

**Site Photographs** 



Photo 1. View along 76 Creek towards the portal of the Sidney Mine. Note mine discharge directly into 76 Creek, view to the southeast (photo by G. Graham, 8/3/2006).



Photo 2. Close-up of mine portal at the Sidney Mine, view to the northeast (photo by G. Graham, 8/3/2006).



Photo 3. Top of waste rock dump at the Sidney Mine. Waste rock was brought out of the mine on rails and side cast into and immediately adjacent to 76 Creek. Note that shrubs and trees are growing fairly well on the dump, view to the northwest (photo by G. Graham, 8/3/2006).



Photo 4. Sidney Mine waste rock dump as viewed from 76 Creek looking towards Photo 3. Note slumping of material as a result of 76 Creek eroding into the toe of the dump, view to the northeast (photo by G. Graham, 8/3/2006).



Photo 5. The majority of the Sidney mine waste dump comprises ferricrete which forms when waste material has been cemented with iron oxides into rock, view to the southeast (photo by G. Graham, 8/3/2006).



Photo 6. Rails and other mining debris from the Sidney Mine located in 76 Creek immediately downstream of the adit and waste rock dump, view to the northwest (photo by G. Graham, 8/3/2006).

### Appendix F

#### **Analytical Report from Severn Trent Laboratories**

Note: Samples for 3 projects were submitted jointly to the lab for analytical analysis. Excerpts of the analytical report relevant only to the Sidney mine are included here and as a result some pages from the complete report are missing. Analytical data for the other 2 projects are reported in separate documents. A complete copy of the analytical report is available, upon request, from the project file.



#### ANALYTICAL REPORT

Job Number: 580-3244-1

Job Description: MBS Monte Cristo

For: USDA Forest Service 215 Melody Lane Wenatchee, WA 98801

Attention: Greg Graham

Heather Curbow Project Mgmt. Assistant

At Curbon

hcurbow@stl-inc.com 08/21/2006

Project Manager: Heather Curbow

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Severn Trent Laboratories, Inc.
STL Seattle 5755 8th Street East, Tacoma, WA 98424
Tel (253) 922-2310 Fax (253) 922-5047 www.stl-inc.com

nelac

#### METHOD SUMMARY

Client: USDA Forest Service Job Number: 580-3244-1

| Descript   | tion                                              | Lab Location | Method Preparation Method | d |
|------------|---------------------------------------------------|--------------|---------------------------|---|
| Matrix:    | Water                                             |              |                           |   |
| Inductivel | y Coupled Plasma - Mass Spectrometry              | STL SEA      | SW846 6020                |   |
|            | Acid Digestion of Waters for Total Recoverable or | STL SEA      | SW846 3005A               |   |
| Hardness   | , Total (mg/l as CaC03), Titrimetric, EDTA        | STL SEA      | MCAWW 130.2               |   |
| Anions by  | Ion Chromatography                                | STL SEA      | EPA-04 300.0              |   |

#### LAB REFERENCES:

STL SEA = STL Seattle

#### METHOD REFERENCES:

EPA-04 - "Methods For The Determination Of Inorganic Substances In Environmental Samples", EPA/600/R-93/100, August 1993.

MCAWW - "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

STL Seattle

# SAMPLE SUMMARY

Client: USDA Forest Service Job Number: 580-3244-1

| Lab Sample ID | Client Sample ID | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received |
|---------------|------------------|---------------|----------------------|-----------------------|
| 580-3244-1    | MC-GC-1          | Water         | 08/02/2006 1030      | 08/08/2006 0815       |
| 580-3244-2    | MC-GC-3          | Water         | 08/02/2006 1300      | 08/08/2006 0815       |
| 580-3244-3    | MC-GC-4          | Water         | 08/02/2006 1315      | 08/08/2006 0815       |
| 580-3244-4    | MC-GC-5          | Water         | 08/02/2006 1715      | 08/08/2006 0815       |
| 580-3244-5    | MC-GC-6          | Water         | 08/02/2006 1445      | 08/08/2006 0815       |
| 580-3244-6    | MC-GC-9          | Water         | 08/02/2006 1645      | 08/08/2006 0815       |
| 580-3244-7    | MC-GC-10         | Water         | 08/02/2006 1830      | 08/08/2006 0815       |
| 580-3244-8    | MC-76-1          | Water         | 08/03/2006 0930      | 08/08/2006 0815       |
| 580-3244-9    | MC-76-2          | Water         | 08/03/2006 0945      | 08/08/2006 0815       |
| 580-3244-10   | MC-76-3          | Water         | 08/03/2006 1130      | 08/08/2006 0815       |

STL Seattle

Page 3 of 24

Client: USDA Forest Service Job Number: 580-3244-1

Client Sample ID: MC-76-1

Lab Sample ID: 580-3244-8 Date Sampled: 08/03/2006 0930 Client Matrix: 08/08/2006 0815 Water Date Received:

6020 Inductively Coupled Plasma - Mass Spectrometry-Total Recoverable

Method: 6020 3005A Preparation:

Dilution: 5.0

08/14/2006 1642 Date Analyzed: 08/14/2006 0957 Date Prepared:

Analysis Batch: 580-9897 Prep Batch: 580-9855

Instrument ID: SEA026 Lab File ID: Initial Weight/Volume: Final Weight/Volume:

N/A 50 mL 50 mL

RL

Result (mg/L) Analyte Qualifier MDL 0.00037 0.000016 Arsenic 0.0058 0.00023 JΒ

Page 11 of 24 STL Seattle

Job Number: 580-3244-1 Client: USDA Forest Service

Client Sample ID: MC-76-2

Lab Sample ID: 580-3244-9 Date Sampled: 08/03/2006 0945 Client Matrix: Water Date Received: 08/08/2006 0815

# 6020 Inductively Coupled Plasma - Mass Spectrometry-Total Recoverable

Method: 6020 Preparation: 3005A Dilution:

5.0

Date Analyzed: 08/14/2006 1647 Date Prepared: 08/14/2006 0957 Analysis Batch: 580-9897 Prep Batch: 580-9855

Instrument ID: Lab File ID:

SEA026

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

| Analyte  | Result (mg/L) | Qualifier | MDL      | RL     |  |
|----------|---------------|-----------|----------|--------|--|
| Arsenic  | 0.019         |           | 0.00037  | 0.0020 |  |
| Lead     | 0.00010       | JB        | 0.000016 | 0.0020 |  |
| Antimony | 0.0015        | JB        | 0.000061 | 0.0020 |  |
| Cadmium  | ND            |           | 0.000037 | 0.0020 |  |
| Copper   | 0.00074       | JB        | 0.000075 | 0.0020 |  |
| Nickel   | 0.00032       | JB        | 0.000052 | 0.0020 |  |
| Zinc     | 0.0049        | JB        | 0.00026  | 0.0050 |  |

Page 12 of 24 STL Seattle

Client: USDA Forest Service Job Number: 580-3244-1

Client Sample ID: MC-76-3

 Lab Sample ID:
 580-3244-10
 Date Sampled:
 08/03/2006
 1130

 Client Matrix:
 Water
 Date Received:
 08/08/2006
 0815

6020 Inductively Coupled Plasma - Mass Spectrometry-Total Recoverable

Method: 6020 Preparation: 3005A Dilution: 5.0

3005A Prep Bat 5.0

Analysis Batch: 580-9897 Prep Batch: 580-9855 Date Analyzed: 08/14/2006 1652 Date Prepared: 08/14/2006 0957

| Result (mg/L) | Qualifier                                           | MDL                                                            | RL                                                                                                                  |
|---------------|-----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| ND            |                                                     | 0.00037                                                        | 0.0020                                                                                                              |
| 0.00034       | JB                                                  | 0.000016                                                       | 0.0020                                                                                                              |
| 0.0031        | В                                                   | 0.000061                                                       | 0.0020                                                                                                              |
| ND            |                                                     | 0.000037                                                       | 0.0020                                                                                                              |
| 0.00060       | JB                                                  | 0.000075                                                       | 0.0020                                                                                                              |
| 0.00028       | JB                                                  | 0.000052                                                       | 0.0020                                                                                                              |
| 0.0052        | В                                                   | 0.00026                                                        | 0.0050                                                                                                              |
|               | ND<br>0.00034<br>0.0031<br>ND<br>0.00060<br>0.00028 | ND<br>0.00034 JB<br>0.0031 B<br>ND<br>0.00060 JB<br>0.00028 JB | ND 0.00037<br>0.00034 JB 0.000016<br>0.0031 B 0.000061<br>ND 0.000037<br>0.00060 JB 0.000075<br>0.00028 JB 0.000052 |

STL Seattle Page 13 of 24

Client: USDA Forest Service Job Number: 580-3244-1

| General Chemistry |  |
|-------------------|--|
|-------------------|--|

Client Sample ID: MC-GC-10

 Lab Sample ID:
 580-3244-7
 Date Sampled:
 08/02/2006
 1830

 Client Matrix:
 Water
 Date Received:
 08/08/2006
 0815

 Analyte
 Result
 Qual
 Units
 RL
 RL
 Dil
 Method

 Hardness as calcium carbonate
 250
 mg/L
 2.0
 2.0
 1.0
 130.2

Anly Batch: 580-9756 Date Analyzed 08/10/2006 0941

Client Sample ID: MC-76-1

 Lab Sample ID:
 580-3244-8
 Date Sampled:
 08/03/2006
 0930

 Client Matrix:
 Water
 Date Received:
 08/08/2006
 0815

 Analyte
 Result
 Qual
 Units
 MDL
 RL
 Dil
 Method

 Sulfate
 1.6
 mg/L
 0.038
 0.30
 1.0
 300.0

Anly Batch: 580-9706 Date Analyzed 08/08/2006 1904

 Analyte
 Result
 Qual
 Units
 RL
 RL
 Dil
 Method

 Hardness as calcium carbonate
 9.0
 mg/L
 2.0
 2.0
 1.0
 130.2

Anly Batch: 580-9756 Date Analyzed 08/10/2006 0941

Client Sample ID: MC-76-2

 Lab Sample ID:
 580-3244-9
 Date Sampled:
 08/03/2006
 0945

 Client Matrix:
 Water
 Date Received:
 08/08/2006
 0815

 Analyte
 Result
 Qual
 Units
 RL
 RL
 Dil
 Method

 Hardness as calcium carbonate
 9.0
 mg/L
 2.0
 2.0
 1.0
 130.2

Anly Batch: 580-9756 Date Analyzed 08/10/2006 0941

STL Seattle Page 16 of 24

Client: USDA Forest Service Job Number: 580-3244-1

General Chemistry

Client Sample ID: MC-76-3

 Lab Sample ID:
 580-3244-10
 Date Sampled:
 08/03/2006
 1130

 Client Matrix:
 Water
 Date Received:
 08/08/2006
 0815

 Analyte
 Result
 Qual
 Units
 MDL
 RL
 Dil
 Method

 Sulfate
 1.8
 mg/L
 0.038
 0.30
 1.0
 300.0

Anly Batch: 580-9706 Date Analyzed 08/08/2006 1922

 Analyte
 Result
 Qual
 Units
 RL
 RL
 Dil
 Method

 Hardness as calcium carbonate
 8.0
 mg/L
 2.0
 2.0
 1.0
 130.2

Anly Batch: 580-9756 Date Analyzed 08/10/2006 0941

STL Seattle Page 17 of 24

# **Quality Control Results**

Client: USDA Forest Service Job Number: 580-3244-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 580-9855

Method: 6020 Preparation: 3005A Total Recoverable

MS Lab Sample ID: Client Matrix:

580-3244-1 Water 50

Analysis Batch: 580-9897 Prep Batch: 580-9855

Instrument ID: SEA026 Lab File ID: N/A

Dilution: 08/14/2006 1536 Date Analyzed: Date Prepared: 08/14/2006 0957

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

MSD Lab Sample ID: 580-3244-1 Client Matrix: Dilution:

Water 50

Analysis Batch: 580-9897 Prep Batch: 580-9855

Instrument ID: SEA026 Lab File ID: N/A

Date Analyzed: 08/14/2006 1541 Date Prepared: 08/14/2006 0957 Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

|          | % R | ec. |          |     |           |         |          |
|----------|-----|-----|----------|-----|-----------|---------|----------|
| Analyte  | MS  | MSD | Limit    | RPD | RPD Limit | MS Qual | MSD Qual |
| Arsenic  | 103 | 106 | 75 - 125 | 2   | 20        |         |          |
| Lead     | 104 | 107 | 75 - 125 | 3   | 20        | В       | В        |
| Antimony | 80  | 83  | 75 - 125 | 4   | 20        | В       | В        |
| Cadmium  | 103 | 102 | 75 - 125 | 1   | 20        |         |          |
| Copper   | 105 | 106 | 75 - 125 | 0   | 20        | В       | В        |
| Nickel   | 105 | 107 | 75 - 125 | 2   | 20        | В       | В        |
| Zinc     | 103 | 107 | 75 - 125 | 3   | 20        | В       | В        |

Duplicate - Batch: 580-9855

Method: 6020 Preparation: 3005A Total Recoverable

Lab Sample ID: 580-3244-1 Client Matrix: Water

Dilution:

Date Analyzed: 08/14/2006 1531 Date Prepared: 08/14/2006 0957 Analysis Batch: 580-9897 Prep Batch: 580-9855

Units: mg/L

Instrument ID: SEA026 Lab File ID: N/A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

| Analyte  | Sample Result/Qua | al Result | RPD | Limit | Qual |
|----------|-------------------|-----------|-----|-------|------|
| Arsenic  | 0.00205           | 0.000390  | 136 | 20    | J    |
| Lead     | 0.000135 J        | 0.000150  | 11  | 20    | JB   |
| Antimony | 0.00424           | 0.00371   | 13  | 20    | В    |
| Cadmium  | 0.0000250         | 0.0000100 | NC  | 20    |      |
| Copper   | 0.00157 J         | 0.00155   | 1   | 20    | JB   |
| Nickel   | 0.00143 J         | 0.00119   | 19  | 20    | JB   |
| Zinc     | 0.00462 J         | 0.00951   | 69  | 20    | В    |

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL Seattle Page 19 of 24

#### **Quality Control Results**

90 - 110

Client: USDA Forest Service Job Number: 580-3244-1

Method Blank - Batch: 580-9756 Method: 130.2 Preparation: N/A

Lab Sample ID: MB 580-9756/1 Analysis Batch: 580-9756 Instrument ID: No Equipment Assigned Prep Batch: N/A Lab File ID: N/A Client Matrix: Water

Initial Weight/Volume: Dilution: 1.0 Units: mg/L Date Analyzed: 08/10/2006 0941 Final Weight/Volume:

Date Prepared: N/A

Hardness as calcium carbonate

Analyte Result Qual RL RL Hardness as calcium carbonate ND 2.0 2.0

Lab Control Spike - Batch: 580-9756 Method: 130.2 Preparation: N/A

Lab Sample ID: LCS 580-9756/2 Analysis Batch: 580-9756

Instrument ID: No Equipment Assigned Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Units: mg/L Initial Weight/Volume: Dilution: 1.0

Date Analyzed: 08/10/2006 0941 Final Weight/Volume: Date Prepared: N/A

1000

Analyte Spike Amount Result % Rec. Limit Qual

1000

100

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL Seattle Page 20 of 24

#### **Quality Control Results**

Client: USDA Forest Service Job Number: 580-3244-1

Method Blank - Batch: 580-9706 Method: 300.0 Preparation: N/A

 Lab Sample ID: MB 580-9706/2
 Analysis Batch: 580-9706
 Instrument ID: SEA025

 Client Matrix: Water
 Prep Batch: N/A
 Lab File ID: N/A

 Dilution: 1.0
 Units: mg/L
 Initial Weight/Volume:

Date Analyzed: 08/08/2006 1325 Final Weight/Volume: 5 mL Date Prepared: N/A

 Analyte
 Result
 Qual
 MDL
 RL

 Sulfate
 ND
 0.038
 0.30

Lab Control Spike - Batch: 580-9706 Method: 300.0 Preparation: N/A

Lab Sample ID: LCS 580-9706/1 Analysis Batch: 580-9706 Instrument ID: SEA025

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Units: mg/L Initial Weight/Volume:

Date Analyzed: 08/08/2006 1307 Final Weight/Volume: 5 mL Date Prepared: N/A

 Analyte
 Spike Amount
 Result
 % Rec.
 Limit
 Qual

 Sulfate
 10.0
 10.2
 102
 90 - 110

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL Seattle Page 21 of 24

# DATA REPORTING QUALIFIERS

Client: USDA Forest Service Job Number: 580-3244-1

| Lab Section | Qualifier | Description                                                                                                    |
|-------------|-----------|----------------------------------------------------------------------------------------------------------------|
| Metals      |           |                                                                                                                |
| Wotalio     |           |                                                                                                                |
|             | В         | Compound was found in the blank and sample.                                                                    |
|             | J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

STL Seattle

Page 22 of 24

| Color   Colo                                                                                                                                                                | ### FOR EST S CRUICE   Proceed the control of the c                                                                                                                                               | Chain of<br>Custody Record                                                                | 571. Seattle<br>5755 8th S<br>Tacoma, W<br>Tel. 253-92<br>Fax 253-92<br>Www.stl-inc | STL Scattle<br>5755 8th Street E.<br>12cona, WA 89424<br>Tel. 253-922-2310<br>Fax 253-922-5047<br>www.stl-inc.com | Ce<br>U                     |                         | SEV                                         | SEVERN<br>TRENT | SIL                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|---------------------------------------------|-----------------|---------------------|
| ### E L D O V L A N E   State   Total Control Contro                                                                                                                                                                | ### 6.0 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FOREST                                                                                    |                                                                                     | 95                                                                                                                | SRAHAM                      |                         | 1/1/2                                       | 900             | 555                 |
| ### 175 of C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 472 4 £ £ 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MELOOY LA                                                                                 | w                                                                                   | SO9-64-9                                                                                                          | , a                         | 928                     | Lab Mumber / 3244                           |                 | ) to                |
| - and Lancher State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The and decisions from the standard from the following the following the standard from the following t                                                                                                                                               |                                                                                           | 75801                                                                               | Jantact                                                                                                           | Lab Contag                  | £03                     | sysis (Attach list if<br>e space is needed) |                 |                     |
| The color forms to the first than th                                                                                                                                                              | The control of the                                                                                                                                                  | CRIST                                                                                     |                                                                                     | W.Waybil Number                                                                                                   | \$53m0d<br>\$7412<br>\$1445 | <del>5</del> 550<br>550 |                                             | S               | al Instructions/    |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90, 10, 200 to control the control to the control to control to the control to control to the co                                                                                                                                               | 20                                                                                        | ER                                                                                  | _                                                                                                                 |                             | 01 7t                   |                                             | Condi           | ions of Receipt     |
| 6C-3  8[3]06 1030 X X X X X X X X HHREDINESS P  6C-4  8[3]06 1715 X X X X X X X HHREDINESS P  6C-10  8[3]06 1715 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6C-3  8/2/66 1030 X X X X X X X X X X X X X X X 1/14 ESDUESS 6C-3  8/2/66 1300 1 X 1 X 1 X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample I.D. and Location/Description<br>(Containers for each sample may be combined on on | Date                                                                                | 'pag'                                                                                                             | HOOH<br>HOOS<br>HS20¢       | 470Z                    |                                             |                 |                     |
| 6C-3  8/3/06 1315   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6C-3  8/3/06 1315   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-00-1                                                                                    | 2                                                                                   | X                                                                                                                 | ×                           | _                       |                                             | ALL             | S FOR META          |
| 664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6644  \$75.06 1715  \$65  \$75.06 1445  \$610  \$75.06 1145  \$75.06 1145  \$75.06 1145  \$75.06 1145  \$75.06 1145  \$75.06 1145  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$75.06 11465  \$ | 1mc - 60-3                                                                                | 12/106                                                                              |                                                                                                                   | ×                           | _                       | ×                                           | + HARDINESS     | PRESERVE            |
| \$6.2-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.2-6  56.2-6  56.2-6  56.2-6  56.2-6  56.2-6  56.2-6  56.2-6  56.2-6  56.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7  76.2-7                                                                                                                                               | 3MC-6C-4                                                                                  | 8/2/06 1315                                                                         |                                                                                                                   |                             |                         | (3)                                         | SAMPL           | FOR                 |
| 56-10  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645  \$12/06 1645 | \$5.2-10  \$12.06   1445   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4971-6c-5                                                                                 | 8/5/06 1715                                                                         |                                                                                                                   | X                           | -                       | ×                                           |                 | SERVED.             |
| \$60-10  \$\frac{9}{2}\left(\frac{1}{2}\right) \right(\frac{1}{2}\right) \right) \right) \right) \right(\frac{1}{2}\right) \right) \                                                                                                                                                            | \$50-9 \$\(\frac{9}{26} - 10\) \$\(\frac{9}{26}                                                      | ~                                                                                         |                                                                                     |                                                                                                                   |                             |                         | 8                                           | 700             | METALS              |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150-6C-9                                                                                  | 12/06                                                                               |                                                                                                                   | ×                           |                         |                                             | 300             | 71003 TO            |
| 76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7  76-7                                                                                                                                                                | 76-1  76-2  8/3/06 0930 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 mc - 6c - 10                                                                            | 10/61                                                                               | <b>-</b>                                                                                                          | >                           | <b>→</b>                |                                             |                 | FLAG.               |
| 76-7  76-3  8/3/06 0945   X X X X X X X X MPE TACF  76-3  8/3/06 0945   X X X X X X X X MEE  76-3  8/3/06 0945   X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76-7  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  76-3  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0945  8/3/06 0                                                                                                                                                |                                                                                           |                                                                                     |                                                                                                                   |                             |                         |                                             | 73              | 6H+ 60W             |
| 746-3  8 3 6 6 1130 V X V X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 746-3  8/3/06 09495  76-3  8/3/06 0130  No Cooler Tenge, 4°C  Possible Hazard Identification  No Cooler Tenge  Sample Disposal Disposal  Sample Dispos                                                                                                                                               |                                                                                           | 3/06                                                                                |                                                                                                                   |                             |                         |                                             | 1465            | NCENTRATIO          |
| 76—3  No Cooler Terror: 4°C  Possible Hazard Wentheration  No Cooler Terror: 4°C  Northeration  N                                                                                                                                                              | 76-3  No Coculier Territo: YeC  Possible Hazard Identification  No Coculier Territo: YeC  No Yec  No Coculier Territo: YeC  No Coculier Territor Yec                                                                                                                                               | 76-                                                                                       | 13/06                                                                               |                                                                                                                   |                             | _                       |                                             |                 |                     |
| Cooker Terror. 40 Possible Hazard Utentification Required (business days)    Astronomy   Sample Disposal By Lab   Astronomy   Return to Chient School By Lab   Astronomy   Sample Disposal By Lab   Disposal By Lab   Astronomy   As                                                                                                                                                              | Cooker Terror. 4°C   Possible Hazard Untertification   Ship infant   Poison B   A Louknown   Return to Chient   Ship infant   Poison B   A fee may be asset   Requirements from the for   Annahis are retained tonge   A fee may be asset   Shays   S   A LO Days   15 Day                                                                                                                                               | 76-                                                                                       | 13/06                                                                               | >                                                                                                                 | ×                           | →<br>→                  | ×                                           |                 |                     |
| Coulter Terror. Control Formable Ship tritain Poison B A Libbrown Chent Schockhe For Months Required Chaires days)    All Hours   S.Days   J. Days   Other   Date   Control Months   Other   Control Months   Other                                                                                                                                                                 | Cooler Terror. T. Minchestand   Flammable   Site tritain   Poison B   Quinknown   Return to Client   Schickive For   Months are retained longer   Requirements (Specify)   A Hours   Substant   Substa                                                                                                                                               | Jajj                                                                                      |                                                                                     |                                                                                                                   |                             |                         | Disposal By Lab                             | (A fee may b    | accepted if camples |
| 48 Hours   5 Days   10 Days   0 Other   1. Received By   5 Days   15 Days                                                                                                                                                                 | 48 Hours   5 Days   10 Day                                                                                                                                               |                                                                                           | mathe C                                                                             | Skio irritant                                                                                                     | M. Unknown                  | Return To Client        | Archive For                                 |                 | onger than I monthl |
| S. House State 1. Received By Sport State                                                                                                                                                               | S. Meceived By  Date Time  2. Received By  1. Received By  S. Received By  Date Date Time  3. Received By  Date Date Date Date Date Date Date Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ☐ 48 Hours ☐ 5 Days 🗡                                                                     | 15 Days                                                                             | ,                                                                                                                 | nadel enguanhar að          |                         | 0                                           |                 |                     |
| Date Time 2. Received By Date  Date  Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date Date Time 3. Received By Date Date WHIE - Stays with the Sentitives: CANMATY - Returned to Chert with Report: PNM - Field Copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                         | )<br>X<br>8/                                                                        | 100                                                                                                               | _                           |                         | 3                                           | 0/50/5          |                     |
| And By 3. Received By Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OANWAYY - Returned to Chert with Resort: Plack Copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | Date                                                                                | Time                                                                                                              | 2. Received By              |                         |                                             | Date            |                     |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CANARY - Returned to Chent with Resort - PINK - Field Conv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3. Relinquished By                                                                        | Date                                                                                | Time                                                                                                              | 3. Received By              |                         |                                             | Date            | Tutte               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CANARY - Returned to Chent with Report: PINK - Field Copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments                                                                                  |                                                                                     | -                                                                                                                 |                             |                         |                                             |                 |                     |
| Indirection and a second and a                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |                                                                                     |                                                                                                                   |                             |                         |                                             |                 |                     |

# LOGIN SAMPLE RECEIPT CHECK LIST

Client: USDA Forest Service Job Number: 580-3244-1

Login Number: 3244

| Question                                                                         | T/F/NA | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time.                                        | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | NA     |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |

STL Seattle

Page 24 of 24